An enhanced framework for real-time dense crowd abnormal behavior detection using YOLOv8

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rabia Nasir, Zakia Jalil, Muhammad Nasir, Tahani Alsubait, Maria Ashraf, Sadia Saleem
{"title":"An enhanced framework for real-time dense crowd abnormal behavior detection using YOLOv8","authors":"Rabia Nasir,&nbsp;Zakia Jalil,&nbsp;Muhammad Nasir,&nbsp;Tahani Alsubait,&nbsp;Maria Ashraf,&nbsp;Sadia Saleem","doi":"10.1007/s10462-025-11206-w","DOIUrl":null,"url":null,"abstract":"<div><p>Abnormal behavior detection in dense crowd, during the Hajj pilgrimage is vital to public security. Existing approaches face challenges due to factors like occlusions, illumination variations, and uniform attire. This research introduces the Crowd Anomaly Detection Framework (CADF), an improved YOLOv8-based model, integrating Soft-NMS to improve detection accuracy under complex conditions. CADF extensively evaluated on the Hajjv2 dataset, delivering an AUC of 88.27%, a 13.09% improvement over YOLOv2 and 12.19% over YOLOv5, with an Accuracy of 91.6%. To validate its generalizability, the framework is also tested on UCSD and ShanghaiTech datasets. Comparisons with state-of-the-art models, including VGG19 and EfficientDet, demonstrated CADF’s superiority in accuracy, AUC, precision, recall, and mAP metrics. By addressing the unique challenges of Hajj crowd and achieving strong performance across diverse datasets, CADF highlights its potential for real-time crowd anomaly detection, contributing to enhanced safety in large-scale public gatherings and aligning with Sustainable Development Goals 3 and 11.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 7","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11206-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11206-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abnormal behavior detection in dense crowd, during the Hajj pilgrimage is vital to public security. Existing approaches face challenges due to factors like occlusions, illumination variations, and uniform attire. This research introduces the Crowd Anomaly Detection Framework (CADF), an improved YOLOv8-based model, integrating Soft-NMS to improve detection accuracy under complex conditions. CADF extensively evaluated on the Hajjv2 dataset, delivering an AUC of 88.27%, a 13.09% improvement over YOLOv2 and 12.19% over YOLOv5, with an Accuracy of 91.6%. To validate its generalizability, the framework is also tested on UCSD and ShanghaiTech datasets. Comparisons with state-of-the-art models, including VGG19 and EfficientDet, demonstrated CADF’s superiority in accuracy, AUC, precision, recall, and mAP metrics. By addressing the unique challenges of Hajj crowd and achieving strong performance across diverse datasets, CADF highlights its potential for real-time crowd anomaly detection, contributing to enhanced safety in large-scale public gatherings and aligning with Sustainable Development Goals 3 and 11.

朝觐期间,在密集人群中检测异常行为对公共安全至关重要。由于遮挡、光照变化和着装统一等因素,现有方法面临挑战。本研究引入了人群异常检测框架(CADF),这是一个基于 YOLOv8 的改进模型,集成了软 NMS,可提高复杂条件下的检测精度。CADF 在 Hajjv2 数据集上进行了广泛评估,其 AUC 为 88.27%,比 YOLOv2 提高了 13.09%,比 YOLOv5 提高了 12.19%,准确率为 91.6%。为了验证其通用性,该框架还在加州大学圣地亚哥分校和上海理工大学的数据集上进行了测试。与 VGG19 和 EfficientDet 等最先进的模型相比,CADF 在准确度、AUC、精确度、召回率和 mAP 指标上都更胜一筹。CADF 解决了朝觐人群的独特挑战,并在各种数据集上取得了优异的性能,从而凸显了其在实时人群异常检测方面的潜力,有助于提高大规模公共集会的安全性,并与可持续发展目标 3 和 11 保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信