Sini Pitkänen , Jonna Niskanen , Raghavendra Mysore , Einari A. Niskanen , Jorma J. Palvimo , Dirk Pijnenburg , Rinie van Beuningen , Azam Rashidian , Thales Kronenberger , Antti Poso , Anna-Liisa Levonen , Jenni Küblbeck , Paavo Honkakoski
{"title":"Activation of steroid hormone receptors by metabolism-disrupting chemicals","authors":"Sini Pitkänen , Jonna Niskanen , Raghavendra Mysore , Einari A. Niskanen , Jorma J. Palvimo , Dirk Pijnenburg , Rinie van Beuningen , Azam Rashidian , Thales Kronenberger , Antti Poso , Anna-Liisa Levonen , Jenni Küblbeck , Paavo Honkakoski","doi":"10.1016/j.taap.2025.117335","DOIUrl":null,"url":null,"abstract":"<div><div>Exposure to metabolism-disrupting chemicals (MDCs), compounds largely belonging to the group of endocrine-disrupting chemicals (EDCs), is associated with metabolic dysfunctions such as dyslipidemia, insulin resistance and hepatic steatosis. Steroid hormone receptors (SHRs) are known targets for MDCs but their regulatory environment in the presence of environmental chemicals remains elusive. Here, we studied the activation and molecular interactions of SHRs exposed to 17 suspected MDCs including pesticides, plasticizers, pharmaceuticals, flame retardants, industrial chemicals and their metabolites by combining in vitro and in silico approaches. We first established and pre-validated reporter gene assays in HepG2 hepatoma cells to assess the activation of estrogen (ER), androgen (AR), glucocorticoid (GR) and progesterone (PR) receptors. Next, using RNA-seq and publicly available protein interaction data, we identified relevant SHR-interacting coregulators expressed in hepatic cells and measured their MDC-dependent interactions with SHRs using the Microarray Assay for Real-time Coregulator-Nuclear receptor Interaction (MARCoNI) technology. Finally, we examined MDC binding to ER and GR using molecular dynamics simulations. These combined approaches lead to identification of MDCs capable of SHR activation at picomolar-to-low micromolar concentrations and paralleled with their ability to induce recruitment of multiple coregulators. MDCs induced distinct SHR-coregulator binding patterns involving multiple coactivators, corepressors and other modulatory proteins. Our results have broadened the test battery to detect MDCs and indicate that the activation of SHRs by MDCs is driven by diverse molecular interactions.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"499 ","pages":"Article 117335"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25001115","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure to metabolism-disrupting chemicals (MDCs), compounds largely belonging to the group of endocrine-disrupting chemicals (EDCs), is associated with metabolic dysfunctions such as dyslipidemia, insulin resistance and hepatic steatosis. Steroid hormone receptors (SHRs) are known targets for MDCs but their regulatory environment in the presence of environmental chemicals remains elusive. Here, we studied the activation and molecular interactions of SHRs exposed to 17 suspected MDCs including pesticides, plasticizers, pharmaceuticals, flame retardants, industrial chemicals and their metabolites by combining in vitro and in silico approaches. We first established and pre-validated reporter gene assays in HepG2 hepatoma cells to assess the activation of estrogen (ER), androgen (AR), glucocorticoid (GR) and progesterone (PR) receptors. Next, using RNA-seq and publicly available protein interaction data, we identified relevant SHR-interacting coregulators expressed in hepatic cells and measured their MDC-dependent interactions with SHRs using the Microarray Assay for Real-time Coregulator-Nuclear receptor Interaction (MARCoNI) technology. Finally, we examined MDC binding to ER and GR using molecular dynamics simulations. These combined approaches lead to identification of MDCs capable of SHR activation at picomolar-to-low micromolar concentrations and paralleled with their ability to induce recruitment of multiple coregulators. MDCs induced distinct SHR-coregulator binding patterns involving multiple coactivators, corepressors and other modulatory proteins. Our results have broadened the test battery to detect MDCs and indicate that the activation of SHRs by MDCs is driven by diverse molecular interactions.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.