{"title":"An efficient coordinated energy trading mechanism for economic sustainability of EVCSs and EVs in competitive electricity market","authors":"Naresh Boda, Prashant Kumar Tiwari","doi":"10.1016/j.segan.2025.101712","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of electric vehicle charging stations (EVCS) into the power grid significantly impacts the electricity market due to the uncoordinated charging behavior of electric vehicles (EVs). This causes changes in load demand, which is responsible for grid imbalances, price changes, higher grid maintenance costs, and a higher chance of power outages, especially in low-voltage grids. This work focuses on enhancing the profit for EVCS while concurrently minimizing the charging cost for EVs owners by using coordinated charging of EVs at EVCS. The better coordinated charging of EVs increases the profit of each EVCS and lowers the cost of charging for EVs owners. This paper proposes a Monte Carlo simulation-based bi-level coordinated transactive energy trading mechanism. In the first part, the Monte Carlo simulation coordinates the EVs charging process based on their respective arrival time at the EVCS, where as in the second part, a cooperative game theory-based energy trading mechanism has been modeled to trade energy in the transactive energy market through the Distribution System Operators(DSO) with different EVCSs. The proposed coordinated charging approach enhances the profitability of all EVCSs as compared to the other existing method. The proposed technique has been implemented and validated on a modified IEEE-33 bus system.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"42 ","pages":"Article 101712"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467725000943","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of electric vehicle charging stations (EVCS) into the power grid significantly impacts the electricity market due to the uncoordinated charging behavior of electric vehicles (EVs). This causes changes in load demand, which is responsible for grid imbalances, price changes, higher grid maintenance costs, and a higher chance of power outages, especially in low-voltage grids. This work focuses on enhancing the profit for EVCS while concurrently minimizing the charging cost for EVs owners by using coordinated charging of EVs at EVCS. The better coordinated charging of EVs increases the profit of each EVCS and lowers the cost of charging for EVs owners. This paper proposes a Monte Carlo simulation-based bi-level coordinated transactive energy trading mechanism. In the first part, the Monte Carlo simulation coordinates the EVs charging process based on their respective arrival time at the EVCS, where as in the second part, a cooperative game theory-based energy trading mechanism has been modeled to trade energy in the transactive energy market through the Distribution System Operators(DSO) with different EVCSs. The proposed coordinated charging approach enhances the profitability of all EVCSs as compared to the other existing method. The proposed technique has been implemented and validated on a modified IEEE-33 bus system.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.