{"title":"DDUM: Deformable Dilated U-structure Module for coronary stenosis detection","authors":"Chenru Wang , Zirui Chen , Muyao Li , Haoran Yin , Saijie Zhou , Jingliang Zhang , Xueying Zeng , Qing Zhang","doi":"10.1016/j.medengphy.2025.104337","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning methods are increasingly popular in assisting physicians with diagnosing coronary artery disease and reducing errors caused by subjective judgment. However, accessing and labeling medical imaging data, especially coronary angiography data, is challenging. Consequently, models trained on such datasets often exhibit low accuracy, high false-positive rates, and limited generalization capabilities. We propose a Deformable Dilatable U-structure Module that can specialize a common network for coronary stenosis detection and enhance its generalization ability. Experiments demonstrate that our proposed module significantly improves the performance of various models. When applying DDUM to a model with ResNet50 as the backbone and faster R-CNN as the detector, the mean average precision increases from 33.76 to 42.39, a 25.56% improvement. Additionally, we show that DDUM enhances the network's generalization ability through transfer learning experiments. This module can improve the network's accuracy for stenosis detection and enhance the generalization ability of the original model. Fine-tuning reduces training costs and ensures that the model can be easily adapted and deployed across different devices.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"139 ","pages":"Article 104337"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000566","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning methods are increasingly popular in assisting physicians with diagnosing coronary artery disease and reducing errors caused by subjective judgment. However, accessing and labeling medical imaging data, especially coronary angiography data, is challenging. Consequently, models trained on such datasets often exhibit low accuracy, high false-positive rates, and limited generalization capabilities. We propose a Deformable Dilatable U-structure Module that can specialize a common network for coronary stenosis detection and enhance its generalization ability. Experiments demonstrate that our proposed module significantly improves the performance of various models. When applying DDUM to a model with ResNet50 as the backbone and faster R-CNN as the detector, the mean average precision increases from 33.76 to 42.39, a 25.56% improvement. Additionally, we show that DDUM enhances the network's generalization ability through transfer learning experiments. This module can improve the network's accuracy for stenosis detection and enhance the generalization ability of the original model. Fine-tuning reduces training costs and ensures that the model can be easily adapted and deployed across different devices.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.