Strategies to combat cancer drug resistance: focus on copper metabolism and cuproptosis.

IF 4.6 Q1 ONCOLOGY
癌症耐药(英文) Pub Date : 2025-03-26 eCollection Date: 2025-01-01 DOI:10.20517/cdr.2025.41
Leyi Yao, Baoyi Jiang, Dacai Xu
{"title":"Strategies to combat cancer drug resistance: focus on copper metabolism and cuproptosis.","authors":"Leyi Yao, Baoyi Jiang, Dacai Xu","doi":"10.20517/cdr.2025.41","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cells often develop tolerance to chemotherapy, targeted therapy, and immunotherapy drugs either before or during treatment. The significant heterogeneity among various tumors poses a critical challenge in modern cancer research, particularly in overcoming drug resistance. Copper, as an essential trace element in the body, participates in various biological processes of diseases, including cancers. The growth of many types of tumor cells exhibits a heightened dependence on copper. Thus, targeting copper metabolism or inducing cuproptosis may be potential ways to overcome cancer drug resistance. Copper chelators have shown potential in overcoming cancer drug resistance by targeting copper-dependent processes in cancer cells. In contrast, copper ionophores, copper-based nanomaterials, and other small molecules have been used to induce copper-dependent cell death (cuproptosis) in cancer cells, including drug-resistant tumor cells. This review summarizes the regulation of copper metabolism and cuproptosis in cancer cells and the role of copper metabolism and cuproptosis in cancer drug resistance, providing ideas for overcoming cancer resistance in the future.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"15"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症耐药(英文)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20517/cdr.2025.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer cells often develop tolerance to chemotherapy, targeted therapy, and immunotherapy drugs either before or during treatment. The significant heterogeneity among various tumors poses a critical challenge in modern cancer research, particularly in overcoming drug resistance. Copper, as an essential trace element in the body, participates in various biological processes of diseases, including cancers. The growth of many types of tumor cells exhibits a heightened dependence on copper. Thus, targeting copper metabolism or inducing cuproptosis may be potential ways to overcome cancer drug resistance. Copper chelators have shown potential in overcoming cancer drug resistance by targeting copper-dependent processes in cancer cells. In contrast, copper ionophores, copper-based nanomaterials, and other small molecules have been used to induce copper-dependent cell death (cuproptosis) in cancer cells, including drug-resistant tumor cells. This review summarizes the regulation of copper metabolism and cuproptosis in cancer cells and the role of copper metabolism and cuproptosis in cancer drug resistance, providing ideas for overcoming cancer resistance in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信