A DEM sensitivity study on the effects of contact parameters on triaxial response for the development of a calibration method

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Damon Nguyen , Yuyan Chen , Alejandro Martinez
{"title":"A DEM sensitivity study on the effects of contact parameters on triaxial response for the development of a calibration method","authors":"Damon Nguyen ,&nbsp;Yuyan Chen ,&nbsp;Alejandro Martinez","doi":"10.1016/j.compgeo.2025.107241","DOIUrl":null,"url":null,"abstract":"<div><div>Discrete element modeling (DEM) is a useful tool for linking global responses of granular materials to underlying particle-level interactions. A DEM model capable of capturing realistic soil behavior must be calibrated to a reference dataset, typically consisting of laboratory experiments. Calibration of a DEM model often requires numerous simulations as contact parameters need to be iterated upon until the simulation results satisfactorily replicate the experimentally observed behaviors. This paper presents a sensitivity investigation that examines the effects of the contact parameters on the drained triaxial compression response of a poorly-graded sand. It then introduces a calibration procedure capable of providing contact parameters that satisfactorily reproduce the results of laboratory triaxial results in a few simulations. Results show that friction and rolling resistance coefficients jointly influence the mobilized peak and critical state friction angles, secant shear modulus, maximum dilation rate, total volumetric strain, and strain softening magnitude. These parameters also influence the mode of failure at contacts and the evolution of fabric anisotropy. The influence of μ<sub>r</sub> or μ on the triaxial response and particle-level interactions is coupled, becoming more profound as the other parameter is increased. Contact stiffness is shown to influence the shear modulus and volumetric change behavior independently of μ and μ<sub>r</sub>. An algorithm that estimates values for μ and μ<sub>r</sub> needed to reproduce experimental results is developed using triaxial response parameters from experimental datasets. The performance of the proposed calibration method is demonstrated for three natural sands showing that it provides appropriate calibrated parameters for poorly graded sands with different relative densities and confined with varying effective stress magnitudes.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"184 ","pages":"Article 107241"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25001909","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Discrete element modeling (DEM) is a useful tool for linking global responses of granular materials to underlying particle-level interactions. A DEM model capable of capturing realistic soil behavior must be calibrated to a reference dataset, typically consisting of laboratory experiments. Calibration of a DEM model often requires numerous simulations as contact parameters need to be iterated upon until the simulation results satisfactorily replicate the experimentally observed behaviors. This paper presents a sensitivity investigation that examines the effects of the contact parameters on the drained triaxial compression response of a poorly-graded sand. It then introduces a calibration procedure capable of providing contact parameters that satisfactorily reproduce the results of laboratory triaxial results in a few simulations. Results show that friction and rolling resistance coefficients jointly influence the mobilized peak and critical state friction angles, secant shear modulus, maximum dilation rate, total volumetric strain, and strain softening magnitude. These parameters also influence the mode of failure at contacts and the evolution of fabric anisotropy. The influence of μr or μ on the triaxial response and particle-level interactions is coupled, becoming more profound as the other parameter is increased. Contact stiffness is shown to influence the shear modulus and volumetric change behavior independently of μ and μr. An algorithm that estimates values for μ and μr needed to reproduce experimental results is developed using triaxial response parameters from experimental datasets. The performance of the proposed calibration method is demonstrated for three natural sands showing that it provides appropriate calibrated parameters for poorly graded sands with different relative densities and confined with varying effective stress magnitudes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信