Integrated omics reveals the regulatory role of PKCα in Sertoli cell proliferation and apoptosis through the MAPK/ERK signaling pathway in goose testis

IF 3.8 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Yupu Song , Qiuyuan Liu , Jingyun Ma , Ichraf Mabrouk , Yuxuan Zhou , Xinyue Li , Guizhen Xue , Xiaoming Ma , Jing Xu , Jingbo Wang , Hongxiao Pan , Guoqing Hua , Heng Cao , Jingtao Hu , Yongfeng Sun
{"title":"Integrated omics reveals the regulatory role of PKCα in Sertoli cell proliferation and apoptosis through the MAPK/ERK signaling pathway in goose testis","authors":"Yupu Song ,&nbsp;Qiuyuan Liu ,&nbsp;Jingyun Ma ,&nbsp;Ichraf Mabrouk ,&nbsp;Yuxuan Zhou ,&nbsp;Xinyue Li ,&nbsp;Guizhen Xue ,&nbsp;Xiaoming Ma ,&nbsp;Jing Xu ,&nbsp;Jingbo Wang ,&nbsp;Hongxiao Pan ,&nbsp;Guoqing Hua ,&nbsp;Heng Cao ,&nbsp;Jingtao Hu ,&nbsp;Yongfeng Sun","doi":"10.1016/j.psj.2025.105123","DOIUrl":null,"url":null,"abstract":"<div><div>Testicular development is essential for reproductive performance in geese, as the testes are the primary organs for sperm production and play a pivotal role in egg-laying physiology. Despite their importance, genes, proteins, and pathways regulating goose testicular development are poorly understood. This study employed integrative transcriptomic and proteomic analysis methods to identify critical regulators of testicular development in geese across three reproductive periods. Additionally, the role of <em>PKCα</em> in Sertoli cell proliferation via the MAPK/ERK pathway was evaluated at the cellular level. A total of 8,921 differentially expressed genes and 1,866 differentially expressed proteins were identified, revealing key pathways such as FOXO, MAPK, PPAR, and Hedgehog that regulate testicular development. Both omics correlation analysis and signal pathway regulation network results show the importance of MAPK in this process, while cellular experiment revealed that <em>PKCα</em> affects proliferation and apoptosis of Sertoli cells through the MAPK/ERK signaling pathway. The findings revealed that <em>PKCα</em> downregulation reduced the expression of genes associated with both cell proliferation and apoptosis, resulting in a diminished activity of Sertoli cells.</div><div>This study compared testicular transcriptomes and proteomes of Hungarian and Jilin white geese, identifying key genes, proteins, and pathways critical for reproduction. These findings advance our understanding of molecular mechanisms underlying testicular development and provide insights to enhance gander reproductive performance.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 6","pages":"Article 105123"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579125003621","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Testicular development is essential for reproductive performance in geese, as the testes are the primary organs for sperm production and play a pivotal role in egg-laying physiology. Despite their importance, genes, proteins, and pathways regulating goose testicular development are poorly understood. This study employed integrative transcriptomic and proteomic analysis methods to identify critical regulators of testicular development in geese across three reproductive periods. Additionally, the role of PKCα in Sertoli cell proliferation via the MAPK/ERK pathway was evaluated at the cellular level. A total of 8,921 differentially expressed genes and 1,866 differentially expressed proteins were identified, revealing key pathways such as FOXO, MAPK, PPAR, and Hedgehog that regulate testicular development. Both omics correlation analysis and signal pathway regulation network results show the importance of MAPK in this process, while cellular experiment revealed that PKCα affects proliferation and apoptosis of Sertoli cells through the MAPK/ERK signaling pathway. The findings revealed that PKCα downregulation reduced the expression of genes associated with both cell proliferation and apoptosis, resulting in a diminished activity of Sertoli cells.
This study compared testicular transcriptomes and proteomes of Hungarian and Jilin white geese, identifying key genes, proteins, and pathways critical for reproduction. These findings advance our understanding of molecular mechanisms underlying testicular development and provide insights to enhance gander reproductive performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Poultry Science
Poultry Science 农林科学-奶制品与动物科学
CiteScore
7.60
自引率
15.90%
发文量
0
审稿时长
94 days
期刊介绍: First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers. An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信