Ximeng Liu, Xuan Liu, Boping Li, Xinglei Zhang, Bin Hu
{"title":"Lab-on-Robot: Unmanned Mass Spectrometry Robot for Direct Sample Analysis in Hazardous and Radioactive Environments","authors":"Ximeng Liu, Xuan Liu, Boping Li, Xinglei Zhang, Bin Hu","doi":"10.1021/acs.analchem.5c01237","DOIUrl":null,"url":null,"abstract":"Onsite, safe, and reliable mass spectrometry (MS) analysis of hazardous and radioactive samples plays a crucial role in timely chemical emergency management and response in real environments. The current study reports the development of a smart MS robot by integrating miniature MS, quadruped robot, switchable robotic arm sampler, and direct ionization for remote-controlled chemical analysis of complex samples in inaccessible hazardous and radioactive environments. High automation and excellent analytical performance have been achieved in the real-time analysis of volatile toxic substances in air and onsite detection of explosive particles in air aerosols. Successful detection of hazardous compounds has been performed from raw wastewater. The chemical analysis of radioactive ore samples has also been demonstrated. Low limits of detection at ng/g or ng/mL (signal-to-noise ratio, S/N = 3) and good relative standard deviation (RSD < 12.0%, <i>n</i> = 6) were obtained by the MS robot for analyzing different gaseous, aerosol, liquid, and solid samples. The remote detection results of the MS robot were further validated. The reported study encourages the future development of a smart lab-on-robot, which functions with smart operation to replace the traditional laboratory procedures for MS analysis of dangerous chemical and environmental samples.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"8 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01237","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Onsite, safe, and reliable mass spectrometry (MS) analysis of hazardous and radioactive samples plays a crucial role in timely chemical emergency management and response in real environments. The current study reports the development of a smart MS robot by integrating miniature MS, quadruped robot, switchable robotic arm sampler, and direct ionization for remote-controlled chemical analysis of complex samples in inaccessible hazardous and radioactive environments. High automation and excellent analytical performance have been achieved in the real-time analysis of volatile toxic substances in air and onsite detection of explosive particles in air aerosols. Successful detection of hazardous compounds has been performed from raw wastewater. The chemical analysis of radioactive ore samples has also been demonstrated. Low limits of detection at ng/g or ng/mL (signal-to-noise ratio, S/N = 3) and good relative standard deviation (RSD < 12.0%, n = 6) were obtained by the MS robot for analyzing different gaseous, aerosol, liquid, and solid samples. The remote detection results of the MS robot were further validated. The reported study encourages the future development of a smart lab-on-robot, which functions with smart operation to replace the traditional laboratory procedures for MS analysis of dangerous chemical and environmental samples.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.