Decoding the thermal conductivity of ionic covalent organic frameworks: Optical phonons as key determinants revealed by neuroevolution potential

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ke Li, Hao Ma
{"title":"Decoding the thermal conductivity of ionic covalent organic frameworks: Optical phonons as key determinants revealed by neuroevolution potential","authors":"Ke Li,&nbsp;Hao Ma","doi":"10.1016/j.mtphys.2025.101724","DOIUrl":null,"url":null,"abstract":"<div><div>Ionic covalent organic frameworks (ICOFs) are a unique subclass of covalent organic frameworks (COFs) that combine the advantages of metal-organic frameworks (MOFs) and COFs through the integration of ionic and covalent bonds. Using ICOF-10n-Li/Na as examples, we trained a machine learning-based neuroevolution potential (NEP) function and conducted a comprehensive study of the thermal transport properties of ICOFs through large-scale molecular dynamics simulations. We found that the thermal conductivity perpendicular to the pore channels (x-direction) reaches a maximum of 4.04 ± 0.20 W m<sup>−1</sup> K<sup>−1</sup> at room temperature, primarily driven by high-frequency optical phonons (contributing ∼94 %). In contrast, the thermal conductivity along the pore channels (z-direction) is 0.74 ± 0.02 W m<sup>−1</sup> K<sup>−1</sup>, dominated by low-frequency acoustic phonons (contributing ∼67 %). Further analysis reveals that linker types strongly influence phonon lifetimes of optical phonons in the x-direction, while interlayer ions significantly impact group velocities of acoustic phonons in the z-direction. This work highlights the critical role of optical phonons in determining the thermal behavior of ICOFs and provides deep insights into the influence of linkers and interlayer ions on thermal transport properties. The superior thermal conductivity (4.04 ± 0.20 W m<sup>−1</sup> K<sup>−1</sup>) achieved in the x-direction underscores the unique synergistic effects of ionic and covalent bonding in ICOFs, making them highly promising for applications requiring efficient thermal management and molecular separation.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"54 ","pages":"Article 101724"},"PeriodicalIF":10.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254252932500080X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ionic covalent organic frameworks (ICOFs) are a unique subclass of covalent organic frameworks (COFs) that combine the advantages of metal-organic frameworks (MOFs) and COFs through the integration of ionic and covalent bonds. Using ICOF-10n-Li/Na as examples, we trained a machine learning-based neuroevolution potential (NEP) function and conducted a comprehensive study of the thermal transport properties of ICOFs through large-scale molecular dynamics simulations. We found that the thermal conductivity perpendicular to the pore channels (x-direction) reaches a maximum of 4.04 ± 0.20 W m−1 K−1 at room temperature, primarily driven by high-frequency optical phonons (contributing ∼94 %). In contrast, the thermal conductivity along the pore channels (z-direction) is 0.74 ± 0.02 W m−1 K−1, dominated by low-frequency acoustic phonons (contributing ∼67 %). Further analysis reveals that linker types strongly influence phonon lifetimes of optical phonons in the x-direction, while interlayer ions significantly impact group velocities of acoustic phonons in the z-direction. This work highlights the critical role of optical phonons in determining the thermal behavior of ICOFs and provides deep insights into the influence of linkers and interlayer ions on thermal transport properties. The superior thermal conductivity (4.04 ± 0.20 W m−1 K−1) achieved in the x-direction underscores the unique synergistic effects of ionic and covalent bonding in ICOFs, making them highly promising for applications requiring efficient thermal management and molecular separation.
解码离子共价有机框架的导热性:神经进化潜能揭示的关键决定因素--光学声子
离子共价有机框架(Ionic covalent organic frameworks, ICOFs)是一类独特的共价有机框架(COFs),通过离子和共价键的结合,将金属有机框架(MOFs)和COFs的优点结合在一起。以ICOF-10n-Li/Na为例,训练了基于机器学习的神经进化电位(NEP)函数,并通过大规模分子动力学模拟对ICOFs的热传递特性进行了全面研究。我们发现,在室温下,垂直于孔通道的热导率(x方向)达到最大值4.04±0.20 W m-1 K-1,主要由高频光学声子驱动(贡献~ 94%)。相比之下,沿孔隙通道(z方向)的导热系数为0.74±0.02 W m-1 K-1,主要由低频声子(贡献67%)主导。进一步分析表明,在x方向上,连接器类型强烈影响光学声子的声子寿命,而在z方向上,层间离子显著影响声子的群速度。这项工作强调了光学声子在确定ICOFs热行为中的关键作用,并深入了解了连接剂和层间离子对热输运性质的影响。在x方向上获得的优越导热系数(4.04±0.20 W m-1 K-1)强调了ICOFs中离子和共价键的独特协同效应,使其在需要高效热管理和分子分离的应用中具有很大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信