Scanning Contact Force Microscope–Scanning Electrochemical Microscopy: A New Approach for Tip Positioning and Simultaneous Imaging of Interfacial Topography and Activity
Yang Wang, Xuesen Zhao, Donghua Zhao, Hantao Xu, Jiayang Lin, Suyu Zhang, Jiqiang Wang, Zhenjiang Hu, Yongda Yan, Dongping Zhan, Yanquan Geng, Lianhuan Han
{"title":"Scanning Contact Force Microscope–Scanning Electrochemical Microscopy: A New Approach for Tip Positioning and Simultaneous Imaging of Interfacial Topography and Activity","authors":"Yang Wang, Xuesen Zhao, Donghua Zhao, Hantao Xu, Jiayang Lin, Suyu Zhang, Jiqiang Wang, Zhenjiang Hu, Yongda Yan, Dongping Zhan, Yanquan Geng, Lianhuan Han","doi":"10.1021/acs.analchem.5c00360","DOIUrl":null,"url":null,"abstract":"Scanning Electrochemical Microscopy (SECM) offers exceptional spatial and temporal resolution while enabling the detection of localized chemical activity. However, the conventional SECM methodology lacks a robust positioning mechanism, leading to the convolution of electrochemical responses with topographical features. This study presents an innovative SECM positioning feedback mechanism, termed as “Scanning Contact Force Microscopy (SCFM)”, leveraging microforce servo control principles to precisely determine the “contact zero point” between the tip and the substrate. The core innovation lies in the integration of a low-stiffness, flexible microbeam with a high-precision capacitive displacement sensor (CDS), significantly minimizing the contact force exerted on the tip. Experimental results demonstrate that SCFM exhibits a normal positioning accuracy of less than 8 nm and a contact force below 20 μN. Morphology detection errors relative to commercial AFM systems were under 2%. Through the integration with SECM, the electrochemical signal is decoupled from the morphology of glassy carbon (GC) substrate with complex structure. Fully compatible with laser-pulled SECM glass electrodes, this technique requires no modifications to electrodes or instrumentation, offering a simple, cost-effective, and versatile solution for advancing nanoscale electrochemical investigations.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"59 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00360","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Scanning Electrochemical Microscopy (SECM) offers exceptional spatial and temporal resolution while enabling the detection of localized chemical activity. However, the conventional SECM methodology lacks a robust positioning mechanism, leading to the convolution of electrochemical responses with topographical features. This study presents an innovative SECM positioning feedback mechanism, termed as “Scanning Contact Force Microscopy (SCFM)”, leveraging microforce servo control principles to precisely determine the “contact zero point” between the tip and the substrate. The core innovation lies in the integration of a low-stiffness, flexible microbeam with a high-precision capacitive displacement sensor (CDS), significantly minimizing the contact force exerted on the tip. Experimental results demonstrate that SCFM exhibits a normal positioning accuracy of less than 8 nm and a contact force below 20 μN. Morphology detection errors relative to commercial AFM systems were under 2%. Through the integration with SECM, the electrochemical signal is decoupled from the morphology of glassy carbon (GC) substrate with complex structure. Fully compatible with laser-pulled SECM glass electrodes, this technique requires no modifications to electrodes or instrumentation, offering a simple, cost-effective, and versatile solution for advancing nanoscale electrochemical investigations.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.