Insights into the Pathogenic Role of Fusaric Acid in Fusarium oxysporum Infection of Brassica oleracea through the Comparative Transcriptomic, Chemical, and Genetic Analyses

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Xin Dong, Jian Ling, Zeyu Li, Yang Jiao, Jianlong Zhao, Yuhong Yang, Zhenchuan Mao, Bingyan Xie, Daowan Lai, Yan Li
{"title":"Insights into the Pathogenic Role of Fusaric Acid in Fusarium oxysporum Infection of Brassica oleracea through the Comparative Transcriptomic, Chemical, and Genetic Analyses","authors":"Xin Dong, Jian Ling, Zeyu Li, Yang Jiao, Jianlong Zhao, Yuhong Yang, Zhenchuan Mao, Bingyan Xie, Daowan Lai, Yan Li","doi":"10.1021/acs.jafc.5c01032","DOIUrl":null,"url":null,"abstract":"Fusarium, a genus of fungi renowned for its plant-pathogenic capabilities, is capable of producing a myriad of structurally diverse secondary metabolites, among which are phytotoxins that play a significant role in the etiology of plant diseases. The particular strain <i>Fusarium oxysporum</i> f. sp. <i>conglutinans</i> (FOC), known as the instigator of <i>Fusarium</i> wilt in cabbage (<i>Brassica oleracea</i>), has been found to secrete an array of toxins and the identities of which have largely remained elusive. In this study, we evaluated the phytotoxicity of crude extracts from the pathogenic FOC strain (FOCr1) and the nonpathogenic <i>F. oxysporum</i> strain (FOcs20) using the cabbage seed phytotoxicity bioassays. Results showed that the crude extract of FOCr1 significantly inhibited seed germination and seedling elongation. Comparative transcriptome analysis and quantitative real-time PCR (qPCR) revealed higher expression levels of a mycotoxin fusaric acid (FA) biosynthetic gene cluster in FOCr1 under host-like conditions (cabbage medium). High-performance liquid chromatography mass spectrometry (HPLC-MS) analysis detected a higher yield FA in the crude extract of FOCr1 but is absent in the FOcs20 strain. Deleting the key gene <i>FUB8</i> in FOCr1’s FA biosynthetic gene cluster delayed wilt symptoms. Moreover, FA treatment was correlated with an uptick in H<sub>2</sub>O<sub>2</sub> levels within seedlings, underscoring its potential as a virulence amplifier. These results suggest that FA acts as a positive virulence factor in FOC.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"21 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.5c01032","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fusarium, a genus of fungi renowned for its plant-pathogenic capabilities, is capable of producing a myriad of structurally diverse secondary metabolites, among which are phytotoxins that play a significant role in the etiology of plant diseases. The particular strain Fusarium oxysporum f. sp. conglutinans (FOC), known as the instigator of Fusarium wilt in cabbage (Brassica oleracea), has been found to secrete an array of toxins and the identities of which have largely remained elusive. In this study, we evaluated the phytotoxicity of crude extracts from the pathogenic FOC strain (FOCr1) and the nonpathogenic F. oxysporum strain (FOcs20) using the cabbage seed phytotoxicity bioassays. Results showed that the crude extract of FOCr1 significantly inhibited seed germination and seedling elongation. Comparative transcriptome analysis and quantitative real-time PCR (qPCR) revealed higher expression levels of a mycotoxin fusaric acid (FA) biosynthetic gene cluster in FOCr1 under host-like conditions (cabbage medium). High-performance liquid chromatography mass spectrometry (HPLC-MS) analysis detected a higher yield FA in the crude extract of FOCr1 but is absent in the FOcs20 strain. Deleting the key gene FUB8 in FOCr1’s FA biosynthetic gene cluster delayed wilt symptoms. Moreover, FA treatment was correlated with an uptick in H2O2 levels within seedlings, underscoring its potential as a virulence amplifier. These results suggest that FA acts as a positive virulence factor in FOC.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信