{"title":"Flavonoid-Sesquiterpenoid Hybrids from the Leaves of <i>Syzygium simile</i> and Their Anti-Lipid Droplet Accumulation Activities.","authors":"Ching-Ju Yang, Yu-Chun Lin, Ho-Cheng Wu, Chia-Hung Yen, Chu-Hung Lin, Yueh-Hsiung Kuo, Hsun-Shuo Chang","doi":"10.1021/acs.jnatprod.5c00157","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic-associated fatty liver disease (MAFLD) represents a spectrum of hepatic disorders characterized by excessive lipid accumulation in the liver with a global prevalence rate of 30%. Despite their increasing prevalence, current therapeutic interventions remain suboptimal, constrained by substantial adverse effects and prohibitive treatment costs. Through an anti-lipid droplet (LD) accumulation screening platform, over 3000 methanolic extracts of Formosan plants were evaluated. Among them, the leaf extract of <i>Syzygium simile</i> demonstrated significant inhibitory activity of 40% at 25 μg/mL, emerging as the most promising species. Through bioassay-guided fractionation, 20 compounds were isolated from the <i>n</i>-hexane layer of the leaves, including nine new compounds [simisyzygins C-G (<b>1</b>-<b>5</b>, respectively) and simicadinenes A-D (<b>6</b>-<b>9</b>, respectively)] and 11 known compounds. These new compounds possess unique carbon skeletons characterized as flavonoid-sesquiterpenoid hybrids. Their structures were elucidated by the analysis of spectroscopic data. The structures of <b>1</b>, <b>4</b>, <b>5</b>, and <b>11</b> were further confirmed by single-crystal X-ray diffraction analysis. Syzygioblane B (<b>11</b>) demonstrated the most potent inhibition of LD accumulation in Huh7 cells, achieving a 64.1% reduction at 40 μM with dose-dependency (5-40 μM) and no observable cytotoxicity. This is the first phytochemical and biological investigation of <i>S</i>. <i>simile</i> that highlights its potential as a promising botanical drug candidate for treating LD accumulation-related diseases.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.5c00157","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic-associated fatty liver disease (MAFLD) represents a spectrum of hepatic disorders characterized by excessive lipid accumulation in the liver with a global prevalence rate of 30%. Despite their increasing prevalence, current therapeutic interventions remain suboptimal, constrained by substantial adverse effects and prohibitive treatment costs. Through an anti-lipid droplet (LD) accumulation screening platform, over 3000 methanolic extracts of Formosan plants were evaluated. Among them, the leaf extract of Syzygium simile demonstrated significant inhibitory activity of 40% at 25 μg/mL, emerging as the most promising species. Through bioassay-guided fractionation, 20 compounds were isolated from the n-hexane layer of the leaves, including nine new compounds [simisyzygins C-G (1-5, respectively) and simicadinenes A-D (6-9, respectively)] and 11 known compounds. These new compounds possess unique carbon skeletons characterized as flavonoid-sesquiterpenoid hybrids. Their structures were elucidated by the analysis of spectroscopic data. The structures of 1, 4, 5, and 11 were further confirmed by single-crystal X-ray diffraction analysis. Syzygioblane B (11) demonstrated the most potent inhibition of LD accumulation in Huh7 cells, achieving a 64.1% reduction at 40 μM with dose-dependency (5-40 μM) and no observable cytotoxicity. This is the first phytochemical and biological investigation of S. simile that highlights its potential as a promising botanical drug candidate for treating LD accumulation-related diseases.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.