Mingwei Zhao, Xujun Yuan, Li Wei, Bo Dai, Songlin Zhuang, Dawei Zhang
{"title":"Concentration Measurement with Ultrabroad Dynamic Range Using Few-Step Variable Optical-Path-Length Slope Method","authors":"Mingwei Zhao, Xujun Yuan, Li Wei, Bo Dai, Songlin Zhuang, Dawei Zhang","doi":"10.1021/acs.analchem.4c06129","DOIUrl":null,"url":null,"abstract":"Concentration measurement has important applications in many fields, including pollution assessment in environmental science and drug dosage calculation in biomedical research. In the conventional methods, concentration is determined by measuring absorbance along a fixed long optical path. However, it is not suitable for high-concentration measurement. Herein, we have proposed a few-step variable optical-path-length slope method (fs-VOSM) for ultrabroad dynamic-range concentration measurement. As a proof of the method, we devised an fs-VOSM system in which a reference path is included to enhance the accuracy and repeatability. The measurement is conducted at 5 positions along ultrashort optical path (0–20 μm) for 800 ms. In the measurement of potassium dichromate solution concentration, the fs-VOSM system exhibits a wide dynamic range from 0.879 to 70.726 g/L with coefficient of variation (CV < 1.4%) and high accuracy (relative error within ±3.5%). We prospect that the fs-VOSM can be widely adopted in many advanced instruments such as process analyzer, flow injection analyzer, and turbidity meter.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"4 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06129","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Concentration measurement has important applications in many fields, including pollution assessment in environmental science and drug dosage calculation in biomedical research. In the conventional methods, concentration is determined by measuring absorbance along a fixed long optical path. However, it is not suitable for high-concentration measurement. Herein, we have proposed a few-step variable optical-path-length slope method (fs-VOSM) for ultrabroad dynamic-range concentration measurement. As a proof of the method, we devised an fs-VOSM system in which a reference path is included to enhance the accuracy and repeatability. The measurement is conducted at 5 positions along ultrashort optical path (0–20 μm) for 800 ms. In the measurement of potassium dichromate solution concentration, the fs-VOSM system exhibits a wide dynamic range from 0.879 to 70.726 g/L with coefficient of variation (CV < 1.4%) and high accuracy (relative error within ±3.5%). We prospect that the fs-VOSM can be widely adopted in many advanced instruments such as process analyzer, flow injection analyzer, and turbidity meter.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.