Locked Nucleic Acid-Enhanced Entropy-Driven Amplifier Combined with Catalytic Hybridization Reaction-Based DNA Circuit for Dual Amplified Detection of Single Nucleotide Polymorphisms and Asymmetric Encryption of Gene Information
Yanlei Li, Zhongfeng Gao, Yu Du, Yujie Han, Xiang Ren, Dan Wu, Hongmin Ma, Huangxian Ju, Fan Xia, Qin Wei, Fuan Wang
{"title":"Locked Nucleic Acid-Enhanced Entropy-Driven Amplifier Combined with Catalytic Hybridization Reaction-Based DNA Circuit for Dual Amplified Detection of Single Nucleotide Polymorphisms and Asymmetric Encryption of Gene Information","authors":"Yanlei Li, Zhongfeng Gao, Yu Du, Yujie Han, Xiang Ren, Dan Wu, Hongmin Ma, Huangxian Ju, Fan Xia, Qin Wei, Fuan Wang","doi":"10.1021/acs.analchem.5c00529","DOIUrl":null,"url":null,"abstract":"Single-nucleotide polymorphisms (SNPs) play a pivotal role in investigations of disease-associated genes and in the genetic analysis of animal and plant varieties. Therefore, the detection of SNPs is essential for advancing biomedical diagnostics and therapeutics. Here, we report a locked nucleic acid (LNA)-enhanced dual signal amplification strategy for high-contrast detecting single-nucleotide polymorphisms (SNPs) in the KRAS_G12C gene. By integrating entropy-driven amplification with catalytic hybridization reaction, the proposed method achieves significant amplification of fluorescence and resonance Rayleigh scattering signals. The incorporation of LNA modification enhances the thermodynamic stability and reaction kinetics of the DNA computing circuit, resulting in superior sensitivity and specificity for SNPs detection. The method exhibits a low detection limit of 0.19 fM and a wide dynamic range from 1 fM to 0.1 nM for the KRAS_G12C gene. Compared to traditional DNA-based circuits, the LNA-modified system demonstrates enhanced discrimination of single-base mismatches and improved signal gain. Moreover, the proposed method was further demonstrated for its potential application in human serum samples. Impressively, this research not only presents a highly sensitive and selective platform for SNPs detection but also demonstrates its potential for molecular-level information encryption. The incorporation of LNA in dual signal amplification significantly elevates the intricacy and robustness of information encryption. Therefore, this study underscores the potential of DNA-based technologies to serve as a bridge between the era of biomedical research and the emerging Internet of things.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"34 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00529","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Single-nucleotide polymorphisms (SNPs) play a pivotal role in investigations of disease-associated genes and in the genetic analysis of animal and plant varieties. Therefore, the detection of SNPs is essential for advancing biomedical diagnostics and therapeutics. Here, we report a locked nucleic acid (LNA)-enhanced dual signal amplification strategy for high-contrast detecting single-nucleotide polymorphisms (SNPs) in the KRAS_G12C gene. By integrating entropy-driven amplification with catalytic hybridization reaction, the proposed method achieves significant amplification of fluorescence and resonance Rayleigh scattering signals. The incorporation of LNA modification enhances the thermodynamic stability and reaction kinetics of the DNA computing circuit, resulting in superior sensitivity and specificity for SNPs detection. The method exhibits a low detection limit of 0.19 fM and a wide dynamic range from 1 fM to 0.1 nM for the KRAS_G12C gene. Compared to traditional DNA-based circuits, the LNA-modified system demonstrates enhanced discrimination of single-base mismatches and improved signal gain. Moreover, the proposed method was further demonstrated for its potential application in human serum samples. Impressively, this research not only presents a highly sensitive and selective platform for SNPs detection but also demonstrates its potential for molecular-level information encryption. The incorporation of LNA in dual signal amplification significantly elevates the intricacy and robustness of information encryption. Therefore, this study underscores the potential of DNA-based technologies to serve as a bridge between the era of biomedical research and the emerging Internet of things.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.