Locked Nucleic Acid-Enhanced Entropy-Driven Amplifier Combined with Catalytic Hybridization Reaction-Based DNA Circuit for Dual Amplified Detection of Single Nucleotide Polymorphisms and Asymmetric Encryption of Gene Information

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Yanlei Li, Zhongfeng Gao, Yu Du, Yujie Han, Xiang Ren, Dan Wu, Hongmin Ma, Huangxian Ju, Fan Xia, Qin Wei, Fuan Wang
{"title":"Locked Nucleic Acid-Enhanced Entropy-Driven Amplifier Combined with Catalytic Hybridization Reaction-Based DNA Circuit for Dual Amplified Detection of Single Nucleotide Polymorphisms and Asymmetric Encryption of Gene Information","authors":"Yanlei Li, Zhongfeng Gao, Yu Du, Yujie Han, Xiang Ren, Dan Wu, Hongmin Ma, Huangxian Ju, Fan Xia, Qin Wei, Fuan Wang","doi":"10.1021/acs.analchem.5c00529","DOIUrl":null,"url":null,"abstract":"Single-nucleotide polymorphisms (SNPs) play a pivotal role in investigations of disease-associated genes and in the genetic analysis of animal and plant varieties. Therefore, the detection of SNPs is essential for advancing biomedical diagnostics and therapeutics. Here, we report a locked nucleic acid (LNA)-enhanced dual signal amplification strategy for high-contrast detecting single-nucleotide polymorphisms (SNPs) in the KRAS_G12C gene. By integrating entropy-driven amplification with catalytic hybridization reaction, the proposed method achieves significant amplification of fluorescence and resonance Rayleigh scattering signals. The incorporation of LNA modification enhances the thermodynamic stability and reaction kinetics of the DNA computing circuit, resulting in superior sensitivity and specificity for SNPs detection. The method exhibits a low detection limit of 0.19 fM and a wide dynamic range from 1 fM to 0.1 nM for the KRAS_G12C gene. Compared to traditional DNA-based circuits, the LNA-modified system demonstrates enhanced discrimination of single-base mismatches and improved signal gain. Moreover, the proposed method was further demonstrated for its potential application in human serum samples. Impressively, this research not only presents a highly sensitive and selective platform for SNPs detection but also demonstrates its potential for molecular-level information encryption. The incorporation of LNA in dual signal amplification significantly elevates the intricacy and robustness of information encryption. Therefore, this study underscores the potential of DNA-based technologies to serve as a bridge between the era of biomedical research and the emerging Internet of things.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"34 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00529","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single-nucleotide polymorphisms (SNPs) play a pivotal role in investigations of disease-associated genes and in the genetic analysis of animal and plant varieties. Therefore, the detection of SNPs is essential for advancing biomedical diagnostics and therapeutics. Here, we report a locked nucleic acid (LNA)-enhanced dual signal amplification strategy for high-contrast detecting single-nucleotide polymorphisms (SNPs) in the KRAS_G12C gene. By integrating entropy-driven amplification with catalytic hybridization reaction, the proposed method achieves significant amplification of fluorescence and resonance Rayleigh scattering signals. The incorporation of LNA modification enhances the thermodynamic stability and reaction kinetics of the DNA computing circuit, resulting in superior sensitivity and specificity for SNPs detection. The method exhibits a low detection limit of 0.19 fM and a wide dynamic range from 1 fM to 0.1 nM for the KRAS_G12C gene. Compared to traditional DNA-based circuits, the LNA-modified system demonstrates enhanced discrimination of single-base mismatches and improved signal gain. Moreover, the proposed method was further demonstrated for its potential application in human serum samples. Impressively, this research not only presents a highly sensitive and selective platform for SNPs detection but also demonstrates its potential for molecular-level information encryption. The incorporation of LNA in dual signal amplification significantly elevates the intricacy and robustness of information encryption. Therefore, this study underscores the potential of DNA-based technologies to serve as a bridge between the era of biomedical research and the emerging Internet of things.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信