Germain Dionmbete, Jean-Baptiste Tarkwa, Franck William Tatchemo Boyom, Serge Nzali, Elie Acayanka, Georges Youbi Kamgang
{"title":"Boosting Nitrate Production in Plasma-Activated Water by Incorporating Dolomite Minerals for Potential Application as a Nitrogen Fertilizer","authors":"Germain Dionmbete, Jean-Baptiste Tarkwa, Franck William Tatchemo Boyom, Serge Nzali, Elie Acayanka, Georges Youbi Kamgang","doi":"10.1007/s11090-025-10556-1","DOIUrl":null,"url":null,"abstract":"<div><p>The conversion of atmospheric nitrogen into nitrogen fertilizer has gained much attention owing to the increasing demand for food given the growth of the world’s population. The gliding arc plasma exhibited great potential in this area and constitutes a green alternative to the conventional Haber–Bosch process of nitrogen fixation by mitigating carbon footprints. The moist air gliding arc plasma treatment has been reported to be effective for the production of nitrogen species for agricultural applications. However, the amount of nitrogen species in the treated water rapidly reached a maximum value within a short time and then no longer increased. Thus, this work proposed an innovative approach to allow nitrate production to continually increase by incorporating a natural harmless dolomite mineral. Interestingly, the results demonstrated a significant effect of dolomite on increasing the nitrate concentration from 115.76 ± 3.15 to 263.19 ± 4.31 mg/L. The effects of operating parameters such as the nature of the feeding gas, the flow rate, the dolomite dosage, and the temperature were investigated. The optimal conditions were established as follows: flow rate, 800 L/h; dolomite dose, 2 g/L; temperature, 45 °C; and moist air gas. Under these conditions, the nitrite and nitrate concentrations reached 16.09 ± 0.50 mg/L and 294.73 ± 5.14 mg/L, respectively, within 60 min of aging. The mechanism of nitrate production was investigated, revealing that the plasma-generated acid species catalyzed dolomite dissolution, releasing Ca<sup>2+</sup> and Mg<sup>2+</sup> ions. In turn, these species react simultaneously with the produced nitrate ions to form double salts of Ca(NO<sub>3</sub>)<sub>2</sub> and Mg(NO<sub>3</sub>)<sub>2</sub>, which serve as reservoirs to promote their accumulation. This study demonstrated substantial nitrate production improvement in distilled water via the use of moist air gliding arc plasma and offered a promising green alternative for nitrogen-based fertilizer production.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"707 - 723"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10556-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The conversion of atmospheric nitrogen into nitrogen fertilizer has gained much attention owing to the increasing demand for food given the growth of the world’s population. The gliding arc plasma exhibited great potential in this area and constitutes a green alternative to the conventional Haber–Bosch process of nitrogen fixation by mitigating carbon footprints. The moist air gliding arc plasma treatment has been reported to be effective for the production of nitrogen species for agricultural applications. However, the amount of nitrogen species in the treated water rapidly reached a maximum value within a short time and then no longer increased. Thus, this work proposed an innovative approach to allow nitrate production to continually increase by incorporating a natural harmless dolomite mineral. Interestingly, the results demonstrated a significant effect of dolomite on increasing the nitrate concentration from 115.76 ± 3.15 to 263.19 ± 4.31 mg/L. The effects of operating parameters such as the nature of the feeding gas, the flow rate, the dolomite dosage, and the temperature were investigated. The optimal conditions were established as follows: flow rate, 800 L/h; dolomite dose, 2 g/L; temperature, 45 °C; and moist air gas. Under these conditions, the nitrite and nitrate concentrations reached 16.09 ± 0.50 mg/L and 294.73 ± 5.14 mg/L, respectively, within 60 min of aging. The mechanism of nitrate production was investigated, revealing that the plasma-generated acid species catalyzed dolomite dissolution, releasing Ca2+ and Mg2+ ions. In turn, these species react simultaneously with the produced nitrate ions to form double salts of Ca(NO3)2 and Mg(NO3)2, which serve as reservoirs to promote their accumulation. This study demonstrated substantial nitrate production improvement in distilled water via the use of moist air gliding arc plasma and offered a promising green alternative for nitrogen-based fertilizer production.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.