I. V. Krivtsun, A. I. Momot, D. V. Antoniv, Binhao Qin
{"title":"Metal Particle in Atmospheric Pressure Current-Carrying Argon Plasma: Numerical Modeling","authors":"I. V. Krivtsun, A. I. Momot, D. V. Antoniv, Binhao Qin","doi":"10.1007/s11090-025-10554-3","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical modeling of atmospheric pressure current-carrying argon plasma containing a single spherical metal particle was performed. The plasma is described in the hydrodynamic approach with account for its thermal and ionization non-equilibrium near the particle. Spatial distributions of electric current, electric potential, and electron flux around a single particle were calculated. The electric current flowing through the particle in the plasma was determined and compared with the model of the highly conducting particle in the uniform conducting media. The surface distribution and total heat flux density from plasma to the particle were studied. The range 10<sup>−5</sup>–10<sup>−4</sup> m of particle radius and the range (0.5–2)×10<sup>7</sup> A/m<sup>2</sup> of current density in unperturbed plasma, corresponding to the conditions of plasma transferred arc surfacing and plasma powder spheroidization, were considered. The electron temperature was assumed to be constant.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"971 - 991"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10554-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical modeling of atmospheric pressure current-carrying argon plasma containing a single spherical metal particle was performed. The plasma is described in the hydrodynamic approach with account for its thermal and ionization non-equilibrium near the particle. Spatial distributions of electric current, electric potential, and electron flux around a single particle were calculated. The electric current flowing through the particle in the plasma was determined and compared with the model of the highly conducting particle in the uniform conducting media. The surface distribution and total heat flux density from plasma to the particle were studied. The range 10−5–10−4 m of particle radius and the range (0.5–2)×107 A/m2 of current density in unperturbed plasma, corresponding to the conditions of plasma transferred arc surfacing and plasma powder spheroidization, were considered. The electron temperature was assumed to be constant.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.