Jie Yu, Huihui Ma, Wenjing Ma, Kai Wang, Chenxu Liang, Minrui Li, Quanfang Lu
{"title":"Diaphragm Discharge Synthesis of Ag2O/CuO Nanoshuttle for Enzyme-Free Glucose Sensing","authors":"Jie Yu, Huihui Ma, Wenjing Ma, Kai Wang, Chenxu Liang, Minrui Li, Quanfang Lu","doi":"10.1007/s11090-025-10557-0","DOIUrl":null,"url":null,"abstract":"<div><p>The Ag<sub>2</sub>O/CuO nanoshuttles stacked with nanosheets were fabricated in CH<sub>3</sub>COONa solution via direct current (DC) diaphragm discharge plasma technique, in which a silver-copper (Ag-Cu) alloy sheet was used as anode, and a graphite rod inserted into a quartz glass tube with a small hole on the sidewall was acted as cathode. The preparation mechanism of Ag<sub>2</sub>O/CuO was discussed in detail. The performance of Ag<sub>2</sub>O/CuO nanoshuttles as electrode material was assessed for sensing glucose. The results showed that Ag<sub>2</sub>O/CuO electrode exhibits a low limit of detection of 0.35 µM, high sensitivity of 1001.2 µA mM<sup>− 1</sup> cm<sup>− 2</sup>, wide linear range of 0.01–7.2 mM, and fast response time of only 0.4 s. In addition, Ag<sub>2</sub>O/CuO has high selectivity, high stability and good repeatability. The glucose in human saliva is determined using Ag<sub>2</sub>O/CuO modified electrode, the recovery is 101.1%~103.2%, and the relative standard deviations (RSDs) are below 5%. All results indicated that Ag<sub>2</sub>O/CuO prepared by diaphragm discharge plasma can be regarded as an alternative electrode material for the glucose sensing. Compared with other synthesis methods, diaphragm discharge is a simple, effective, and green technique without expensive platinum, metal salts, alkali sources, and high temperature.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Ag<sub>2</sub>O/CuO nanoshuttles were fabricated via direct current diaphragm discharge plasma technique, and then regarded as an electrode material for sensing glucose</p></div></div></figure></div></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"773 - 794"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10557-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Ag2O/CuO nanoshuttles stacked with nanosheets were fabricated in CH3COONa solution via direct current (DC) diaphragm discharge plasma technique, in which a silver-copper (Ag-Cu) alloy sheet was used as anode, and a graphite rod inserted into a quartz glass tube with a small hole on the sidewall was acted as cathode. The preparation mechanism of Ag2O/CuO was discussed in detail. The performance of Ag2O/CuO nanoshuttles as electrode material was assessed for sensing glucose. The results showed that Ag2O/CuO electrode exhibits a low limit of detection of 0.35 µM, high sensitivity of 1001.2 µA mM− 1 cm− 2, wide linear range of 0.01–7.2 mM, and fast response time of only 0.4 s. In addition, Ag2O/CuO has high selectivity, high stability and good repeatability. The glucose in human saliva is determined using Ag2O/CuO modified electrode, the recovery is 101.1%~103.2%, and the relative standard deviations (RSDs) are below 5%. All results indicated that Ag2O/CuO prepared by diaphragm discharge plasma can be regarded as an alternative electrode material for the glucose sensing. Compared with other synthesis methods, diaphragm discharge is a simple, effective, and green technique without expensive platinum, metal salts, alkali sources, and high temperature.
Graphical Abstract
Ag2O/CuO nanoshuttles were fabricated via direct current diaphragm discharge plasma technique, and then regarded as an electrode material for sensing glucose
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.