Machine learning augmented TCAD assessment of corner radii in nanosheet FET

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jyoti Patel , Bathula Satwik , Navjeet Bagga , Ishani Bais , Chirag Arora , Vivek Kumar , Ankit Dixit , Naveen Kumar , Vihar Georgiev , S. Dasgupta
{"title":"Machine learning augmented TCAD assessment of corner radii in nanosheet FET","authors":"Jyoti Patel ,&nbsp;Bathula Satwik ,&nbsp;Navjeet Bagga ,&nbsp;Ishani Bais ,&nbsp;Chirag Arora ,&nbsp;Vivek Kumar ,&nbsp;Ankit Dixit ,&nbsp;Naveen Kumar ,&nbsp;Vihar Georgiev ,&nbsp;S. Dasgupta","doi":"10.1016/j.sse.2025.109114","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we proposed a machine learning approach to assist the TCAD results in realizing a local cost and time-effective simulator for analyzing the performance metric of the vertically stacked Nanosheet FET (NSFET). The corners are responsible for field crowding inside the sheets, which significantly affects the parasitic capacitance and thereby reduces the I<sub>ON</sub>/C<sub>gg</sub> ratio. Thus, a detailed insight into corner radii optimization is worth needed. We used Sentaurus TCAD to obtain the results and further realized a local simulator using an XGBoost model to analyze process variations and the role of uneven radii corners in NSFET. In addition, a data augmentation strategy is proposed that leverages the powers of stacked autoencoders (SAE) and InfoGANs to enhance data generalization, improving model robustness and predictive reliability.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"227 ","pages":"Article 109114"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125000590","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we proposed a machine learning approach to assist the TCAD results in realizing a local cost and time-effective simulator for analyzing the performance metric of the vertically stacked Nanosheet FET (NSFET). The corners are responsible for field crowding inside the sheets, which significantly affects the parasitic capacitance and thereby reduces the ION/Cgg ratio. Thus, a detailed insight into corner radii optimization is worth needed. We used Sentaurus TCAD to obtain the results and further realized a local simulator using an XGBoost model to analyze process variations and the role of uneven radii corners in NSFET. In addition, a data augmentation strategy is proposed that leverages the powers of stacked autoencoders (SAE) and InfoGANs to enhance data generalization, improving model robustness and predictive reliability.
机器学习增强了纳米片场效应管拐角半径的TCAD评估
在本文中,我们提出了一种机器学习方法来帮助TCAD结果实现一个局部成本和时间有效的模拟器,用于分析垂直堆叠纳米片场效应管(NSFET)的性能指标。边角导致片内的场拥挤,这显著影响寄生电容,从而降低了ION/Cgg比率。因此,需要详细了解拐角半径优化。我们使用Sentaurus TCAD获得了结果,并进一步利用XGBoost模型实现了局部模拟器,分析了过程变化以及不均匀半径角在NSFET中的作用。此外,提出了一种数据增强策略,利用堆叠自编码器(SAE)和InfoGANs的功能来增强数据泛化,提高模型的鲁棒性和预测可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信