Efficient and Discriminative Isolation of Circulating Cancer Stem Cells and Non-Stem-like Circulating Tumor Cells Using a Click-Handle-Loaded M13 Phage-Based Surface

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Huida Li, Fengting Jia, Xin Wang, Ting Yang, Jian-Hua Wang
{"title":"Efficient and Discriminative Isolation of Circulating Cancer Stem Cells and Non-Stem-like Circulating Tumor Cells Using a Click-Handle-Loaded M13 Phage-Based Surface","authors":"Huida Li, Fengting Jia, Xin Wang, Ting Yang, Jian-Hua Wang","doi":"10.1021/acs.analchem.5c00924","DOIUrl":null,"url":null,"abstract":"Circulating tumor cells (CTCs) are crucial for cancer research and clinical applications, with circulating cancer stem cells (cCSCs) being a rare but key subpopulation responsible for metastasis, recurrence, and therapy resistance. Current limitations in efficiently isolating these cells, particularly distinguishing cCSCs from non-stem-like CTCs (nsCTCs), hinder our understanding of cancer progression and precision medicine strategies. Herein, we developed a novel CTC isolation approach that integrates cell metabolic chemical tagging with a <i><u>c</u></i>lick-<i><u>h</u></i>andle-loaded M13 <i><u>ph</u></i>age-based surf<i><u>ace</u></i> (CHPhace). The multivalent nature of flexible M13 nanofibers, featuring thousands of modification sites for click reactions, significantly enhances CTC capture across diverse tumor types. Leveraging the unique slow-cycling characteristic of cCSCs, CHPhace demonstrated selective cCSCs isolation through metabolic labeling and demetabolism processes. The robust performance of CHPhace allows efficient isolation of both cCSCs and nsCTCs from complex blood sample matrices, achieving capture efficiencies exceeding 80%. This approach represents a promising tool for advancing our understanding of cancer progression and enhancing precision in clinical diagnosis and cancer prognosis.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"20 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00924","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Circulating tumor cells (CTCs) are crucial for cancer research and clinical applications, with circulating cancer stem cells (cCSCs) being a rare but key subpopulation responsible for metastasis, recurrence, and therapy resistance. Current limitations in efficiently isolating these cells, particularly distinguishing cCSCs from non-stem-like CTCs (nsCTCs), hinder our understanding of cancer progression and precision medicine strategies. Herein, we developed a novel CTC isolation approach that integrates cell metabolic chemical tagging with a click-handle-loaded M13 phage-based surface (CHPhace). The multivalent nature of flexible M13 nanofibers, featuring thousands of modification sites for click reactions, significantly enhances CTC capture across diverse tumor types. Leveraging the unique slow-cycling characteristic of cCSCs, CHPhace demonstrated selective cCSCs isolation through metabolic labeling and demetabolism processes. The robust performance of CHPhace allows efficient isolation of both cCSCs and nsCTCs from complex blood sample matrices, achieving capture efficiencies exceeding 80%. This approach represents a promising tool for advancing our understanding of cancer progression and enhancing precision in clinical diagnosis and cancer prognosis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信