One factor to bind them all: visual foraging organization to predict patch leaving behavior with ROC curves.

IF 3.1 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Marcos Bella-Fernández, Manuel Suero Suñé, Alicia Ferrer-Mendieta, Beatriz Gil-Gómez de Liaño
{"title":"One factor to bind them all: visual foraging organization to predict patch leaving behavior with ROC curves.","authors":"Marcos Bella-Fernández, Manuel Suero Suñé, Alicia Ferrer-Mendieta, Beatriz Gil-Gómez de Liaño","doi":"10.1186/s41235-025-00624-7","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting quitting rules is critical in visual search: Did I search enough for a cancer nodule in a breast X-ray or a threat in a baggage airport scanner? This study examines the predictive power of search organization indexes like best-r, mean ITD, PAO, or intersection rates as optimal criteria to leave a search in foraging (looking for several targets among distractors). In a sample of 29 adults, we compared static and dynamic foraging. Also, we reanalyze data from diverse foraging tasks in the lifespan already published to replicate results. Using ROC curves, all results consistently show that organization measures outperform classic intake rates commonly used in animal models to predict optimal human quitting behavior. Importantly, a combination of organization and traditional intake rates within a unitary factor is the best predictor. Our findings open a new research line for studying optimal decisions in visual search tasks based on search organization.</p>","PeriodicalId":46827,"journal":{"name":"Cognitive Research-Principles and Implications","volume":"10 1","pages":"16"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Research-Principles and Implications","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1186/s41235-025-00624-7","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting quitting rules is critical in visual search: Did I search enough for a cancer nodule in a breast X-ray or a threat in a baggage airport scanner? This study examines the predictive power of search organization indexes like best-r, mean ITD, PAO, or intersection rates as optimal criteria to leave a search in foraging (looking for several targets among distractors). In a sample of 29 adults, we compared static and dynamic foraging. Also, we reanalyze data from diverse foraging tasks in the lifespan already published to replicate results. Using ROC curves, all results consistently show that organization measures outperform classic intake rates commonly used in animal models to predict optimal human quitting behavior. Importantly, a combination of organization and traditional intake rates within a unitary factor is the best predictor. Our findings open a new research line for studying optimal decisions in visual search tasks based on search organization.

将它们结合在一起的一个因素是:用ROC曲线预测斑块离开行为的视觉觅食组织。
预测退出规则在视觉搜索中是至关重要的:我是否在乳房x光检查中搜索了足够多的癌症结节,或者在行李机场扫描仪中搜索了足够多的威胁?本研究检验了搜索组织指数的预测能力,如best-r、平均ITD、PAO或交叉率,作为搜索的最佳标准(在干扰物中寻找多个目标)。在29个成年人的样本中,我们比较了静态和动态觅食。此外,我们重新分析了已经发表的生命周期中不同觅食任务的数据,以复制结果。使用ROC曲线,所有结果一致表明,组织测量优于通常用于预测最佳人类戒烟行为的动物模型中的经典摄入量。重要的是,在一个单一的因素中结合组织和传统的摄取率是最好的预测因素。我们的研究结果为研究基于搜索组织的视觉搜索任务的最优决策开辟了一条新的研究路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
7.30%
发文量
96
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信