Ellagic Acid and Gut Microbiota: Interactions, and Implications for Health

IF 3.5 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Pinze Leng, Ye Wang, Minhao Xie
{"title":"Ellagic Acid and Gut Microbiota: Interactions, and Implications for Health","authors":"Pinze Leng,&nbsp;Ye Wang,&nbsp;Minhao Xie","doi":"10.1002/fsn3.70133","DOIUrl":null,"url":null,"abstract":"<p>Ellagic acid (EA), a widely distributed natural polyphenolic acid existing in many kinds of plant-based foods, undergoes complex physical and chemical transformations during digestion and biotransformation. Particularly, EA is metabolized by gut microbiota and transformed into urolithins in the colon. These metabolites exhibit enhanced bioavailability and bioactivity. This review explores the intricate interactions between EA and gut microbiota, emphasizing their implications for human health. We discuss the role of gut microbiota in EA metabolism, resulting in distinct metabolic phenotypes associated with varying urolithin production profiles. EA and its gut-derived metabolites, urolithins, have been reported to have the potential to modulate the microbial community composition and function of gut microbiota, promoting beneficial bacteria while reducing harmful ones. Furthermore, EA and urolithins exhibit a spectrum of beneficial biological activities, including antioxidant, anti-inflammatory, and anticancer properties, along with enhancements to intestinal barrier function and modulatory effects on metabolic and cardiovascular systems, through molecular mechanisms such as activating Nrf2 and inhibiting NF-κB pathways. The review highlights and compares the potential of EA and its gut microbial metabolites in the prevention and treatment of various diseases. However, further studies are required to elucidate the underlying mechanisms of the interactions between EA and gut microbiota and their health benefits. Continued investigation into EA and its metabolites is essential for advancing our understanding of their role in promoting human health and developing novel therapeutic applications.</p>","PeriodicalId":12418,"journal":{"name":"Food Science & Nutrition","volume":"13 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.70133","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science & Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.70133","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ellagic acid (EA), a widely distributed natural polyphenolic acid existing in many kinds of plant-based foods, undergoes complex physical and chemical transformations during digestion and biotransformation. Particularly, EA is metabolized by gut microbiota and transformed into urolithins in the colon. These metabolites exhibit enhanced bioavailability and bioactivity. This review explores the intricate interactions between EA and gut microbiota, emphasizing their implications for human health. We discuss the role of gut microbiota in EA metabolism, resulting in distinct metabolic phenotypes associated with varying urolithin production profiles. EA and its gut-derived metabolites, urolithins, have been reported to have the potential to modulate the microbial community composition and function of gut microbiota, promoting beneficial bacteria while reducing harmful ones. Furthermore, EA and urolithins exhibit a spectrum of beneficial biological activities, including antioxidant, anti-inflammatory, and anticancer properties, along with enhancements to intestinal barrier function and modulatory effects on metabolic and cardiovascular systems, through molecular mechanisms such as activating Nrf2 and inhibiting NF-κB pathways. The review highlights and compares the potential of EA and its gut microbial metabolites in the prevention and treatment of various diseases. However, further studies are required to elucidate the underlying mechanisms of the interactions between EA and gut microbiota and their health benefits. Continued investigation into EA and its metabolites is essential for advancing our understanding of their role in promoting human health and developing novel therapeutic applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Science & Nutrition
Food Science & Nutrition Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
5.10%
发文量
434
审稿时长
24 weeks
期刊介绍: Food Science & Nutrition is the peer-reviewed journal for rapid dissemination of research in all areas of food science and nutrition. The Journal will consider submissions of quality papers describing the results of fundamental and applied research related to all aspects of human food and nutrition, as well as interdisciplinary research that spans these two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信