Analysis of electron mobility in 7-level stacked nanosheet GAA nMOSFETs

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Michelly de Souza , Jaime Calçade Rodrigues , Lucas Mota Barbosa da Silva , Flavio Enrico Bergamaschi , Mikaël Cassé , Sylvain Barraud , Olivier Faynot , Marcelo Antonio Pavanello
{"title":"Analysis of electron mobility in 7-level stacked nanosheet GAA nMOSFETs","authors":"Michelly de Souza ,&nbsp;Jaime Calçade Rodrigues ,&nbsp;Lucas Mota Barbosa da Silva ,&nbsp;Flavio Enrico Bergamaschi ,&nbsp;Mikaël Cassé ,&nbsp;Sylvain Barraud ,&nbsp;Olivier Faynot ,&nbsp;Marcelo Antonio Pavanello","doi":"10.1016/j.sse.2025.109115","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, an experimental assessment of transport parameters in 7-level stacked nanosheet GAA nMOSFETs is conducted, employing the Y-Function methodology to extract carrier mobility. Specifically, the contribution of horizontal and vertical conduction planes to mobility and degradation factors is investigated for transistors with varying channel lengths and nanosheet widths. The findings reveal that while overall low-field mobility demonstrates weak dependency on nanosheet width, it suffers some reduction in short-channel transistors. Furthermore, the mobility degradation was analyzed, and the results indicate that overall mobility degradation coefficients depend on the nanosheet width, as the balance between horizontal and vertical contributions varies. Notably, while the linear degradation factor dominates the mobility degradation at horizontal planes, vertical planes exhibit a dominant quadratic degradation factor. This suggests larger surface roughness scattering at sidewalls compared to horizontal planes.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"227 ","pages":"Article 109115"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125000607","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an experimental assessment of transport parameters in 7-level stacked nanosheet GAA nMOSFETs is conducted, employing the Y-Function methodology to extract carrier mobility. Specifically, the contribution of horizontal and vertical conduction planes to mobility and degradation factors is investigated for transistors with varying channel lengths and nanosheet widths. The findings reveal that while overall low-field mobility demonstrates weak dependency on nanosheet width, it suffers some reduction in short-channel transistors. Furthermore, the mobility degradation was analyzed, and the results indicate that overall mobility degradation coefficients depend on the nanosheet width, as the balance between horizontal and vertical contributions varies. Notably, while the linear degradation factor dominates the mobility degradation at horizontal planes, vertical planes exhibit a dominant quadratic degradation factor. This suggests larger surface roughness scattering at sidewalls compared to horizontal planes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信