A general approach for determining applicability domain of machine learning models

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lane E. Schultz, Yiqi Wang, Ryan Jacobs, Dane Morgan
{"title":"A general approach for determining applicability domain of machine learning models","authors":"Lane E. Schultz, Yiqi Wang, Ryan Jacobs, Dane Morgan","doi":"10.1038/s41524-025-01573-x","DOIUrl":null,"url":null,"abstract":"<p>Knowledge of the domain of applicability of a machine learning model is essential to ensuring accurate and reliable model predictions. In this work, we develop a new and general approach of assessing model domain and demonstrate that our approach provides accurate and meaningful domain designation across multiple model types and material property data sets. Our approach assesses the distance between data in feature space using kernel density estimation, where this distance provides an effective tool for domain determination. We show that chemical groups considered unrelated based on chemical knowledge exhibit significant dissimilarities by our measure. We also show that high measures of dissimilarity are associated with poor model performance (i.e., high residual magnitudes) and poor estimates of model uncertainty (i.e., unreliable uncertainty estimation). Automated tools are provided to enable researchers to establish acceptable dissimilarity thresholds to identify whether new predictions of their own machine learning models are in-domain versus out-of-domain.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"42 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01573-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge of the domain of applicability of a machine learning model is essential to ensuring accurate and reliable model predictions. In this work, we develop a new and general approach of assessing model domain and demonstrate that our approach provides accurate and meaningful domain designation across multiple model types and material property data sets. Our approach assesses the distance between data in feature space using kernel density estimation, where this distance provides an effective tool for domain determination. We show that chemical groups considered unrelated based on chemical knowledge exhibit significant dissimilarities by our measure. We also show that high measures of dissimilarity are associated with poor model performance (i.e., high residual magnitudes) and poor estimates of model uncertainty (i.e., unreliable uncertainty estimation). Automated tools are provided to enable researchers to establish acceptable dissimilarity thresholds to identify whether new predictions of their own machine learning models are in-domain versus out-of-domain.

Abstract Image

确定机器学习模型适用范围的一般方法
了解机器学习模型的适用领域对于确保模型预测的准确性和可靠性至关重要。在这项工作中,我们开发了一种新的通用方法来评估模型领域,并证明我们的方法可以跨多种模型类型和材料属性数据集提供准确而有意义的领域指定。我们的方法使用核密度估计来评估特征空间中数据之间的距离,这种距离为确定域提供了有效的工具。我们表明,化学基团认为不相关的基础上,化学知识表现出显著的差异通过我们的措施。我们还表明,高度的不相似性度量与较差的模型性能(即,高残差值)和较差的模型不确定性估计(即,不可靠的不确定性估计)相关。提供自动化工具,使研究人员能够建立可接受的不相似性阈值,以确定他们自己的机器学习模型的新预测是在域内还是域外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信