{"title":"Human high-order thalamic nuclei gate conscious perception through the thalamofrontal loop","authors":"Zepeng Fang, Yuanyuan Dang, An’an Ping, Chenyu Wang, Qianchuan Zhao, Hulin Zhao, Xiaoli Li, Mingsha Zhang","doi":"10.1126/science.adr3675","DOIUrl":null,"url":null,"abstract":"<div >Human high-order thalamic nuclei activity is known to closely correlate with conscious states. However, it is not clear how those thalamic nuclei and thalamocortical interactions directly contribute to the transient process of human conscious perception. We simultaneously recorded stereoelectroencephalography data from the thalamic nuclei and prefrontal cortex (PFC), while patients with implanted electrodes performed a visual consciousness task. Compared with the ventral nuclei and PFC, the intralaminar and medial nuclei presented earlier and stronger consciousness-related activity. Transient thalamofrontal neural synchrony and cross-frequency coupling were both driven by the θ phase of the intralaminar and medial nuclei during conscious perception. The intralaminar and medial thalamic nuclei thus play a gate role to drive the activity of the PFC during the emergence of conscious perception.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"388 6742","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adr3675","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Human high-order thalamic nuclei activity is known to closely correlate with conscious states. However, it is not clear how those thalamic nuclei and thalamocortical interactions directly contribute to the transient process of human conscious perception. We simultaneously recorded stereoelectroencephalography data from the thalamic nuclei and prefrontal cortex (PFC), while patients with implanted electrodes performed a visual consciousness task. Compared with the ventral nuclei and PFC, the intralaminar and medial nuclei presented earlier and stronger consciousness-related activity. Transient thalamofrontal neural synchrony and cross-frequency coupling were both driven by the θ phase of the intralaminar and medial nuclei during conscious perception. The intralaminar and medial thalamic nuclei thus play a gate role to drive the activity of the PFC during the emergence of conscious perception.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.