Cryogenic Hyperdimensional In-Memory Computing Using Ferroelectric TCAM

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shivendra Singh Parihar;Shubham Kumar;Swetaki Chatterjee;Girish Pahwa;Yogesh Singh Chauhan;Hussam Amrouch
{"title":"Cryogenic Hyperdimensional In-Memory Computing Using Ferroelectric TCAM","authors":"Shivendra Singh Parihar;Shubham Kumar;Swetaki Chatterjee;Girish Pahwa;Yogesh Singh Chauhan;Hussam Amrouch","doi":"10.1109/JXCDC.2025.3547797","DOIUrl":null,"url":null,"abstract":"Cryogenic operations of electronics present a significant step forward to achieve huge demand of in-memory computing (IMC) for high-performance computing, quantum computing, and military applications. Ferroelectric (FE) is a promising candidate to develop the complementary metal oxide semiconductor (CMOS)-compatible nonvolatile memories. Hence, in this work, we investigate the effectiveness of IMC using emerging FE technology at the 5-nm technology node. To achieve that, we begin by characterizing commercial 5-nm fin field-effect transistors (FinFETs) from room temperature (300 K) down to cryogenic temperature (10 K). Then, we carefully calibrate the first industry-standard cryogenic-aware compact model [Berkeley Short-channel IGFET Model-Common Multi-Gate (BSIM-CMG)] to accurately reproduce the measurements. Afterward, we use the Preisach-model-based approach to incorporate the impact of FE within the BSIM-CMG model framework using the measurements from FE capacitor to realize ferroelectric fin field-effect transistors (Fe-FinFETs) operating from 300 down to 10 K. Then, as proof of concept, we focus on <inline-formula> <tex-math>$1\\times 8$ </tex-math></inline-formula> ternary content addressable memory (TCAM) array that is used to perform language classification and voice recognition using brain-inspired hyperdimensional IMC. Our comprehensive analysis spans from investigating the delay, power, and energy efficiency of TCAM-based IMC all the way up to calculating error probabilities in which we compare the figure of merits obtained from the emerging Fe-FinFET against classical FinFET-based IMC. We reveal that cryogenic temperatures lead to the worst performance in Fe-FinFET-based TCAM. Hence, we have also proposed solutions to improve the cryogenic performance of Fe-FinFET-based TCAM.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"11 ","pages":"34-41"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909519","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10909519/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogenic operations of electronics present a significant step forward to achieve huge demand of in-memory computing (IMC) for high-performance computing, quantum computing, and military applications. Ferroelectric (FE) is a promising candidate to develop the complementary metal oxide semiconductor (CMOS)-compatible nonvolatile memories. Hence, in this work, we investigate the effectiveness of IMC using emerging FE technology at the 5-nm technology node. To achieve that, we begin by characterizing commercial 5-nm fin field-effect transistors (FinFETs) from room temperature (300 K) down to cryogenic temperature (10 K). Then, we carefully calibrate the first industry-standard cryogenic-aware compact model [Berkeley Short-channel IGFET Model-Common Multi-Gate (BSIM-CMG)] to accurately reproduce the measurements. Afterward, we use the Preisach-model-based approach to incorporate the impact of FE within the BSIM-CMG model framework using the measurements from FE capacitor to realize ferroelectric fin field-effect transistors (Fe-FinFETs) operating from 300 down to 10 K. Then, as proof of concept, we focus on $1\times 8$ ternary content addressable memory (TCAM) array that is used to perform language classification and voice recognition using brain-inspired hyperdimensional IMC. Our comprehensive analysis spans from investigating the delay, power, and energy efficiency of TCAM-based IMC all the way up to calculating error probabilities in which we compare the figure of merits obtained from the emerging Fe-FinFET against classical FinFET-based IMC. We reveal that cryogenic temperatures lead to the worst performance in Fe-FinFET-based TCAM. Hence, we have also proposed solutions to improve the cryogenic performance of Fe-FinFET-based TCAM.
基于铁电TCAM的低温超维内存计算
电子产品的低温操作是实现高性能计算、量子计算和军事应用对内存计算(IMC)巨大需求的重要一步。铁电(FE)是开发互补金属氧化物半导体(CMOS)兼容非易失性存储器的一个很有前途的候选材料。因此,在这项工作中,我们在5纳米技术节点上使用新兴的FE技术来研究IMC的有效性。为了实现这一目标,我们首先从室温(300 K)到低温(10 K)对商用5nm翅片场效应晶体管(finfet)进行表征。然后,我们仔细校准了第一个工业标准的低温感知紧凑模型[伯克利短通道IGFET模型-通用多栅极(BSIM-CMG)],以准确重现测量结果。随后,我们使用基于preisach模型的方法,利用FE电容器的测量值将FE的影响纳入BSIM-CMG模型框架,以实现在300至10 K范围内工作的铁电翅片场效应晶体管(FE - finfet)。然后,作为概念证明,我们关注$1\ × 8$三元内容可寻址存储器(TCAM)阵列,该阵列用于使用脑启发的超维IMC执行语言分类和语音识别。我们的综合分析涵盖了从研究基于tcam的IMC的延迟、功率和能效一直到计算误差概率,其中我们比较了新兴的Fe-FinFET与传统的基于finfet的IMC的优点。我们发现低温导致fe - finfet基TCAM的最差性能。因此,我们也提出了改善基于fe - finfet的TCAM低温性能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信