{"title":"Assessment of the influence of climate change on power grid transmission capacity","authors":"Montaña-Salas Sergio, Michiorri Andrea","doi":"10.1016/j.segan.2025.101695","DOIUrl":null,"url":null,"abstract":"<div><div>In order to propose effective solutions to mitigate the effects of climate change on the electrical power system, it is essential to have a comprehensive understanding and quantification of the relevant issues. This article explores the impact of climate on transmission network capacity, employing established thermal models and a regional expansion plan, fed by historical and climatic projections on a 0.25° grid resolution over the European continent. The results indicate that, under the high greenhouse gas emissions scenario (RCP 8.5), the area studied will experience average reductions of 1.53%, 2.1%, and 0.2% capacity by 2070, for overhead lines, power transformers, and underground cables, respectively. We propose a quasi-dynamic thermal rating method to estimate maximum capacity. This results in a capacity improvement of up to 22% for power transformers in winter and up to 17% for overhead lines during nighttime hours. This solution represents a viable alternative for electricity operators seeking to solve the dilemma of temperature-driven capacity reduction in the context of challenging network reinforcements.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"42 ","pages":"Article 101695"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467725000773","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to propose effective solutions to mitigate the effects of climate change on the electrical power system, it is essential to have a comprehensive understanding and quantification of the relevant issues. This article explores the impact of climate on transmission network capacity, employing established thermal models and a regional expansion plan, fed by historical and climatic projections on a 0.25° grid resolution over the European continent. The results indicate that, under the high greenhouse gas emissions scenario (RCP 8.5), the area studied will experience average reductions of 1.53%, 2.1%, and 0.2% capacity by 2070, for overhead lines, power transformers, and underground cables, respectively. We propose a quasi-dynamic thermal rating method to estimate maximum capacity. This results in a capacity improvement of up to 22% for power transformers in winter and up to 17% for overhead lines during nighttime hours. This solution represents a viable alternative for electricity operators seeking to solve the dilemma of temperature-driven capacity reduction in the context of challenging network reinforcements.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.