Glutamate induction of whole potatoes alleviated the browning of fresh cuts: Jasmonate signalling may play a key role

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Liping Qiao, Xinru Hou, Xiaokui Li, Naijun Hu, Xin Yang, Yansheng Wang, Xihong Li, Laifeng Lu, Xia Liu
{"title":"Glutamate induction of whole potatoes alleviated the browning of fresh cuts: Jasmonate signalling may play a key role","authors":"Liping Qiao, Xinru Hou, Xiaokui Li, Naijun Hu, Xin Yang, Yansheng Wang, Xihong Li, Laifeng Lu, Xia Liu","doi":"10.1016/j.foodchem.2025.144138","DOIUrl":null,"url":null,"abstract":"Enzymatic browning is one of the most troublesome issues for fresh-cut fruits and vegetables, as it not only reduces product quality and shelf life but also causes great waste and economic loss. Although many antibrowning technologies have been explored, few noncontact methods have been reported. In particular, the effect of using glutamate (Glu) is unknown. This study revealed that Glu treatment of whole tubers significantly reduced browning in fresh-cut potatoes. This whole-tuber Glu induction under optimal conditions (1 % Glu for 12 h) produced a brighter colour and better sensory quality than soaking slices in solutions of Glu or ascorbic acid. Notably, Glu induction led to increased jasmonic acid (JA) and jasmonate-isoleucine (JA-Ile) accumulation. The activities of 12-oxophytodienoic acid reductase 3 (OPR3), jasmonate-resistant 1 (JAR1), and coronatine-insensitive 1 (COI1) in the jasmonate synthesis pathway and the expression of their corresponding genes also increased. Additionally, phenylpropane metabolism was upregulated, as evidenced by increased levels of phenylalanine ammonia-lyase (PAL), 4-coumaric acid coenzyme a ligase (4CL), phenolic compounds and flavonoids. Moreover, the reactive oxygen species (ROS)–redox balance improved, the contents of hydrogen peroxide and malondialdehyde (MDA) decreased, and the catalase (CAT) activity and 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) scavenging capacity increased. Finally, Glu induction increased microbiological safety, resulting in a lower total bacterial count. Thus, Glu induction may modulate jasmonic acid synthesis and signalling, regulate phenylpropane metabolism and the reactive oxygen species (ROS)–redox balance, and ultimately slow browning and improve storage quality in fresh-cut potatoes. This is the first report of a noncontact browning control technique involving Glu, which provides new ideas for the fresh-cut industry.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"15 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.144138","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymatic browning is one of the most troublesome issues for fresh-cut fruits and vegetables, as it not only reduces product quality and shelf life but also causes great waste and economic loss. Although many antibrowning technologies have been explored, few noncontact methods have been reported. In particular, the effect of using glutamate (Glu) is unknown. This study revealed that Glu treatment of whole tubers significantly reduced browning in fresh-cut potatoes. This whole-tuber Glu induction under optimal conditions (1 % Glu for 12 h) produced a brighter colour and better sensory quality than soaking slices in solutions of Glu or ascorbic acid. Notably, Glu induction led to increased jasmonic acid (JA) and jasmonate-isoleucine (JA-Ile) accumulation. The activities of 12-oxophytodienoic acid reductase 3 (OPR3), jasmonate-resistant 1 (JAR1), and coronatine-insensitive 1 (COI1) in the jasmonate synthesis pathway and the expression of their corresponding genes also increased. Additionally, phenylpropane metabolism was upregulated, as evidenced by increased levels of phenylalanine ammonia-lyase (PAL), 4-coumaric acid coenzyme a ligase (4CL), phenolic compounds and flavonoids. Moreover, the reactive oxygen species (ROS)–redox balance improved, the contents of hydrogen peroxide and malondialdehyde (MDA) decreased, and the catalase (CAT) activity and 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) scavenging capacity increased. Finally, Glu induction increased microbiological safety, resulting in a lower total bacterial count. Thus, Glu induction may modulate jasmonic acid synthesis and signalling, regulate phenylpropane metabolism and the reactive oxygen species (ROS)–redox balance, and ultimately slow browning and improve storage quality in fresh-cut potatoes. This is the first report of a noncontact browning control technique involving Glu, which provides new ideas for the fresh-cut industry.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信