Data-Independent Acquisition Coupled with Electron-Activated Dissociation for In-Depth Structure Elucidation of the Fatty Acid Ester of Hydroxy Fatty Acids

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Yuto Kurizaki, Yuki Matsuzawa, Mikiko Takahashi, Hiroaki Takeda, Mayu Hasegawa, Makoto Arita, Junki Miyamoto, Hiroshi Tsugawa
{"title":"Data-Independent Acquisition Coupled with Electron-Activated Dissociation for In-Depth Structure Elucidation of the Fatty Acid Ester of Hydroxy Fatty Acids","authors":"Yuto Kurizaki, Yuki Matsuzawa, Mikiko Takahashi, Hiroaki Takeda, Mayu Hasegawa, Makoto Arita, Junki Miyamoto, Hiroshi Tsugawa","doi":"10.1021/acs.analchem.4c06736","DOIUrl":null,"url":null,"abstract":"Fatty acid esters of hydroxy fatty acid (FAHFAs) are a biologically important class of lipids known for their anti-inflammatory and antidiabetic effects in animals. The physiological activity of FAHFAs varies depending on the length of the carbon chain, number and position of double bonds (DBs), and position of the hydroxyl (OH) group. Moreover, gut bacteria produce FAHFAs with more diverse structures than those produced by the host, which necessitates a FAHFA-lipidomics approach grasping their diverse structures to fully understand the physiological and metabolic significance of FAHFAs. In this study, we developed a methodology for the in-depth structural elucidation of FAHFAs. First, FAHFAs were enriched by using a solid-phase extraction (SPE) system coated with titanium and zirconium dioxide, which separated these analytes from neutral lipids and phospholipids. The fractionated metabolites were then derivatized using <i>N,N</i>-dimethylethylenediamine (DMED) to facilitate FAHFA detection in the positive ion mode of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. A data-independent acquisition technique known as sequential window acquisition of all theoretical mass spectra (SWATH-DIA) was used to collect sequential MS/MS spectra of the DMED-derivatized fatty acid metabolites. Structural elucidation was based on fragment ions generated by electron-activated dissociation (EAD). DMED-FAHFAs were annotated using the newly updated MS-DIAL program, and FAHFA isomers were quantified using the MRMPROBS program, which quantifies lipids based on SWATH-MS/MS chromatograms. This procedure was applied to profile the FAHFAs present in mouse fecal samples, characterizing seven structures at the molecular species level, 63 structures at the OH-position-resolved level, and 15 structures at both the DB- and OH-position-resolved levels, using the MS-DIAL program. In the MRMPROBS analysis, 2OH and 3OH hydroxy fatty acids with more than 20 carbon atoms were predominantly expressed, while 5OH–13OH hydroxy fatty acids with 16 or 18 carbon atoms were the major components, abundant at positions 5, 7, 9, and 10. Furthermore, age-related changes in FAHFA isomers were also observed, where FAHFA 4:0/2O(FA 26:0) and FAHFA 16:0/10O(FA 16:0) significantly increased with age. In conclusion, our study offers a novel LC-SWATH-EAD-MS/MS technique with the update of computational MS to facilitate in-depth structural lipidomics of FAHFAs.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"58 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06736","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fatty acid esters of hydroxy fatty acid (FAHFAs) are a biologically important class of lipids known for their anti-inflammatory and antidiabetic effects in animals. The physiological activity of FAHFAs varies depending on the length of the carbon chain, number and position of double bonds (DBs), and position of the hydroxyl (OH) group. Moreover, gut bacteria produce FAHFAs with more diverse structures than those produced by the host, which necessitates a FAHFA-lipidomics approach grasping their diverse structures to fully understand the physiological and metabolic significance of FAHFAs. In this study, we developed a methodology for the in-depth structural elucidation of FAHFAs. First, FAHFAs were enriched by using a solid-phase extraction (SPE) system coated with titanium and zirconium dioxide, which separated these analytes from neutral lipids and phospholipids. The fractionated metabolites were then derivatized using N,N-dimethylethylenediamine (DMED) to facilitate FAHFA detection in the positive ion mode of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. A data-independent acquisition technique known as sequential window acquisition of all theoretical mass spectra (SWATH-DIA) was used to collect sequential MS/MS spectra of the DMED-derivatized fatty acid metabolites. Structural elucidation was based on fragment ions generated by electron-activated dissociation (EAD). DMED-FAHFAs were annotated using the newly updated MS-DIAL program, and FAHFA isomers were quantified using the MRMPROBS program, which quantifies lipids based on SWATH-MS/MS chromatograms. This procedure was applied to profile the FAHFAs present in mouse fecal samples, characterizing seven structures at the molecular species level, 63 structures at the OH-position-resolved level, and 15 structures at both the DB- and OH-position-resolved levels, using the MS-DIAL program. In the MRMPROBS analysis, 2OH and 3OH hydroxy fatty acids with more than 20 carbon atoms were predominantly expressed, while 5OH–13OH hydroxy fatty acids with 16 or 18 carbon atoms were the major components, abundant at positions 5, 7, 9, and 10. Furthermore, age-related changes in FAHFA isomers were also observed, where FAHFA 4:0/2O(FA 26:0) and FAHFA 16:0/10O(FA 16:0) significantly increased with age. In conclusion, our study offers a novel LC-SWATH-EAD-MS/MS technique with the update of computational MS to facilitate in-depth structural lipidomics of FAHFAs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信