{"title":"Molecular Nutritional Research for Effective Utilization of Marine Lipid-soluble Components.","authors":"Masashi Hosokawa","doi":"10.5650/jos.ess25013","DOIUrl":null,"url":null,"abstract":"<p><p>Marine organisms contain unique lipid-soluble components. Therefore, we focused on the health benefits of these lipid-soluble components and conducted molecular nutritional studies. Fucoxanthin (Fx) is a typical marine carotenoid, found in brown seaweeds, such as Undaria pinnatifida (Wakame) and Saccharina japonica (Makonbu), and we demonstrated its anti-obesity and anti-diabetic effects in animal models. As the molecular mechanism for anti-diabetic effect, dietary Fx has found to activate insulin signaling pathways and glucose transporter 4 (GLUT 4) in the skeletal muscles of diabetic/obese KK-A<sup>y</sup> mice. Notably, Fx promoted GLUT4 translocation in the soleus muscle, up-regulated GLUT4 expression in the EDL muscle, and prevented and improved hyperglycemia through effective glucose uptake depending on the muscle types. On the other hand, n-3 docosapentaenoic acid (n-3 DPA), an n-3 poly unsaturated fatty acid found in salmon and trout, is converted to EPA and DHA in cultured cells. The intracellular conversion of n-3 DPA differed different among cells derived from macrophages, liver, and intestines. n-3 DPA markedly down-regulates the mRNA expression of pro-inflammatory factors in activated macrophages. The suppressive effect of n-3 DPA on IL-6 mRNA expression was similar to that of DHA, but stronger than that of EPA. In addition, we demonstrated that n-3 PUFA-binding phosphatidylglycerol (PG) exhibited anti-inflammatory effects against activated macrophages, and that the effect was stronger than that of n-3 PUFA-phosphatidylcholine (PC). Furthermore, n-3 PUFA-PG significantly increased the intracellular EPA and DHA content compared to n-3 PUFA-PC treatment and induced Nrf2 activation. n-3 PUFA-PG, which enhances intracellular PUFAs, is contained in several microalgae such as Phaeodactylum tricornutum. It can also be enzymatically prepared and is expected to be used as a new functional lipid.</p>","PeriodicalId":16626,"journal":{"name":"Journal of oleo science","volume":"74 4","pages":"329-340"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oleo science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5650/jos.ess25013","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Marine organisms contain unique lipid-soluble components. Therefore, we focused on the health benefits of these lipid-soluble components and conducted molecular nutritional studies. Fucoxanthin (Fx) is a typical marine carotenoid, found in brown seaweeds, such as Undaria pinnatifida (Wakame) and Saccharina japonica (Makonbu), and we demonstrated its anti-obesity and anti-diabetic effects in animal models. As the molecular mechanism for anti-diabetic effect, dietary Fx has found to activate insulin signaling pathways and glucose transporter 4 (GLUT 4) in the skeletal muscles of diabetic/obese KK-Ay mice. Notably, Fx promoted GLUT4 translocation in the soleus muscle, up-regulated GLUT4 expression in the EDL muscle, and prevented and improved hyperglycemia through effective glucose uptake depending on the muscle types. On the other hand, n-3 docosapentaenoic acid (n-3 DPA), an n-3 poly unsaturated fatty acid found in salmon and trout, is converted to EPA and DHA in cultured cells. The intracellular conversion of n-3 DPA differed different among cells derived from macrophages, liver, and intestines. n-3 DPA markedly down-regulates the mRNA expression of pro-inflammatory factors in activated macrophages. The suppressive effect of n-3 DPA on IL-6 mRNA expression was similar to that of DHA, but stronger than that of EPA. In addition, we demonstrated that n-3 PUFA-binding phosphatidylglycerol (PG) exhibited anti-inflammatory effects against activated macrophages, and that the effect was stronger than that of n-3 PUFA-phosphatidylcholine (PC). Furthermore, n-3 PUFA-PG significantly increased the intracellular EPA and DHA content compared to n-3 PUFA-PC treatment and induced Nrf2 activation. n-3 PUFA-PG, which enhances intracellular PUFAs, is contained in several microalgae such as Phaeodactylum tricornutum. It can also be enzymatically prepared and is expected to be used as a new functional lipid.
期刊介绍:
The J. Oleo Sci. publishes original researches of high quality on chemistry, biochemistry and science of fats and oils
such as related food products, detergents, natural products,
petroleum products, lipids and related proteins and sugars.
The Journal also encourages papers on chemistry and/or biochemistry as a major component combined with biological/
sensory/nutritional/toxicological evaluation related to agriculture and/or food.