Tsuyoshi Kato, Kana Yamamoto, Sanae Naito, Kaori Yamada, Emiko Mizuguchi
{"title":"Absolute Quantification of Individual Phospholipids in Infant Formula using Phosphorus Nuclear Magnetic Resonance Spectroscopy.","authors":"Tsuyoshi Kato, Kana Yamamoto, Sanae Naito, Kaori Yamada, Emiko Mizuguchi","doi":"10.5650/jos.ess24232","DOIUrl":null,"url":null,"abstract":"<p><p>To accurately quantify the phospholipids in infant formula by subclass, we developed an analytical method using phosphorus-31 nuclear magnetic resonance spectroscopy (<sup>31</sup>P NMR). We performed heated extraction method using a mixture of ethanol and water to extract phospholipids from infant formula and replace the highly toxic chloroform traditionally used for extraction. In the <sup>31</sup>P NMR measurement, we also avoided using chloroform by dispersing the extracts in surfactants with a strong affinity for phospholipids. Although polar lipids in milk are characterized by a high content of sphingomyelin, the separation of sphingomyelin and phosphatidylethanolamine signals was insufficient to accurately determine their signal areas. To overcome this issue, we applied and evaluated two different methods, integration and deconvolution, for calculating the signal areas. During method validation in a spiked recovery test, the deconvolution method gave a recovery rate closer to 100% than the integration method. The main phospholipid subclasses found in infant formula were phosphatidylcholine, phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine, and sphingomyelin. However, when the formula contained soy lecithin, additional soy-derived phospholipids, such as phosphatidic acid, were detected. Using equipment with a phosphorus resonance frequency of 202 MHz and a measurement time of approximately 4 h, the quantification limit was 5 mg/100 g. The developed method will be useful for analysis of phospholipids in infant formula.</p>","PeriodicalId":16626,"journal":{"name":"Journal of oleo science","volume":"74 4","pages":"361-375"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oleo science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5650/jos.ess24232","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
To accurately quantify the phospholipids in infant formula by subclass, we developed an analytical method using phosphorus-31 nuclear magnetic resonance spectroscopy (31P NMR). We performed heated extraction method using a mixture of ethanol and water to extract phospholipids from infant formula and replace the highly toxic chloroform traditionally used for extraction. In the 31P NMR measurement, we also avoided using chloroform by dispersing the extracts in surfactants with a strong affinity for phospholipids. Although polar lipids in milk are characterized by a high content of sphingomyelin, the separation of sphingomyelin and phosphatidylethanolamine signals was insufficient to accurately determine their signal areas. To overcome this issue, we applied and evaluated two different methods, integration and deconvolution, for calculating the signal areas. During method validation in a spiked recovery test, the deconvolution method gave a recovery rate closer to 100% than the integration method. The main phospholipid subclasses found in infant formula were phosphatidylcholine, phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine, and sphingomyelin. However, when the formula contained soy lecithin, additional soy-derived phospholipids, such as phosphatidic acid, were detected. Using equipment with a phosphorus resonance frequency of 202 MHz and a measurement time of approximately 4 h, the quantification limit was 5 mg/100 g. The developed method will be useful for analysis of phospholipids in infant formula.
期刊介绍:
The J. Oleo Sci. publishes original researches of high quality on chemistry, biochemistry and science of fats and oils
such as related food products, detergents, natural products,
petroleum products, lipids and related proteins and sugars.
The Journal also encourages papers on chemistry and/or biochemistry as a major component combined with biological/
sensory/nutritional/toxicological evaluation related to agriculture and/or food.