Modulating the Structural, Thermal and Techno-Functional Properties of Sesame Protein Isolate Using Nonthermal Techniques

IF 3.5 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Osman Gul, Melike Seyda Sahin, Abdullah Akgun, Latife Betul Gul
{"title":"Modulating the Structural, Thermal and Techno-Functional Properties of Sesame Protein Isolate Using Nonthermal Techniques","authors":"Osman Gul,&nbsp;Melike Seyda Sahin,&nbsp;Abdullah Akgun,&nbsp;Latife Betul Gul","doi":"10.1002/fsn3.70144","DOIUrl":null,"url":null,"abstract":"<p>Sesame protein isolate is a promising sustainable plant-based protein due to its high nutritional value and unique flavor. However, due to several challenges related to its functional characteristics, sesame protein can only be used sparingly in food applications. Therefore, the main objective of this study was to investigate the effects of nonthermal techniques including high-pressure homogenization (HPH, 100 MPa), high-intensity ultrasound (US, at a frequency of 20 kHz for 6 min), and high hydrostatic pressure (HHP, 400 MPa for 5 min) on the structure and functional properties of sesame protein isolate from sesame cake as a by-product. The results indicated that all nonthermal treatments encouraged the sesame protein insoluble suspension to change into a consistent protein dispersion, increasing the stability of the protein while reducing particle size (from 65.73 to 1.48 μm), increasing zeta potential (from −24.57 to −42.8 mV), and unfolding the molecular structure. All treatments led to an increase in β-sheets and reduced α-helix, and the most remarkable change in secondary structure occurred in the HPH treated sample that exhibited the highest UV absorbance. Minimal impact on the protein's thermal properties was monitored. Compared with the untreated sample, the techno-functional properties were significantly enhanced after modification, and the highest protein solubility (88.18%), EAI (62.09 m<sup>2</sup>/g), ESI (65.43 min), and OHC (1.89 g oil/g protein) obtained in the sample treated with HPH. Therefore, this work suggests that HPH could be a more promising technique than US and HHP to enhance the techno-functional properties of sesame protein isolate.</p>","PeriodicalId":12418,"journal":{"name":"Food Science & Nutrition","volume":"13 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.70144","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science & Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.70144","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sesame protein isolate is a promising sustainable plant-based protein due to its high nutritional value and unique flavor. However, due to several challenges related to its functional characteristics, sesame protein can only be used sparingly in food applications. Therefore, the main objective of this study was to investigate the effects of nonthermal techniques including high-pressure homogenization (HPH, 100 MPa), high-intensity ultrasound (US, at a frequency of 20 kHz for 6 min), and high hydrostatic pressure (HHP, 400 MPa for 5 min) on the structure and functional properties of sesame protein isolate from sesame cake as a by-product. The results indicated that all nonthermal treatments encouraged the sesame protein insoluble suspension to change into a consistent protein dispersion, increasing the stability of the protein while reducing particle size (from 65.73 to 1.48 μm), increasing zeta potential (from −24.57 to −42.8 mV), and unfolding the molecular structure. All treatments led to an increase in β-sheets and reduced α-helix, and the most remarkable change in secondary structure occurred in the HPH treated sample that exhibited the highest UV absorbance. Minimal impact on the protein's thermal properties was monitored. Compared with the untreated sample, the techno-functional properties were significantly enhanced after modification, and the highest protein solubility (88.18%), EAI (62.09 m2/g), ESI (65.43 min), and OHC (1.89 g oil/g protein) obtained in the sample treated with HPH. Therefore, this work suggests that HPH could be a more promising technique than US and HHP to enhance the techno-functional properties of sesame protein isolate.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Science & Nutrition
Food Science & Nutrition Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
5.10%
发文量
434
审稿时长
24 weeks
期刊介绍: Food Science & Nutrition is the peer-reviewed journal for rapid dissemination of research in all areas of food science and nutrition. The Journal will consider submissions of quality papers describing the results of fundamental and applied research related to all aspects of human food and nutrition, as well as interdisciplinary research that spans these two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信