A full-spectrum color converter based on tricolor phosphor-in-glass films for laser-driven white lighting†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lishuo Huang, Renguang Ye, Youjie Hua, Yue Qi, Guoqing Jiang, Ruiming Tan, Tianzhi Jiang, Can Jin, Jingtao Zhao, Muzhi Cai, Bingpeng Li, Feifei Huang, Gongxun Bai, Shilong Zhao, Junjie Zhang and Shiqing Xu
{"title":"A full-spectrum color converter based on tricolor phosphor-in-glass films for laser-driven white lighting†","authors":"Lishuo Huang, Renguang Ye, Youjie Hua, Yue Qi, Guoqing Jiang, Ruiming Tan, Tianzhi Jiang, Can Jin, Jingtao Zhao, Muzhi Cai, Bingpeng Li, Feifei Huang, Gongxun Bai, Shilong Zhao, Junjie Zhang and Shiqing Xu","doi":"10.1039/D4TC05513F","DOIUrl":null,"url":null,"abstract":"<p >Full-spectrum laser-driven white lighting shows promise for high-luminance solid-state illumination and is highly desirable for lighting application domains such as education, healthcare, and residential lighting. However, obtaining both a high color rendering index (Ra) and high luminous efficiency (LE) concurrently poses a great challenge for the development of laser-driven white lighting. Herein, a novel tricolor phosphor-in-glass film (PiGF) is designed and fabricated <em>via</em> a facile low-temperature co-sintering strategy. ZnO–Li<small><sub>2</sub></small>O–SiO<small><sub>2</sub></small> (ZLS) glass along with Y<small><sub>3</sub></small>Al<small><sub>5</sub></small>O<small><sub>12</sub></small>:Ce<small><sup>3+</sup></small> (YAG), CaAlSiN<small><sub>3</sub></small>:Eu<small><sup>2+</sup></small> (CASN), and Lu<small><sub>3</sub></small>(Al, Ga)<small><sub>5</sub></small>O<small><sub>12</sub></small>:Ce<small><sup>3+</sup></small> (LuAGG) phosphors was coated onto sapphire substrates <em>via</em> the blade-coating method and then subjected to low-temperature co-firing, fabricating composite phosphor-in-glass film (PiGF) samples for full-spectrum laser-driven white lighting. High LE and Ra were achieved by optimizing the glass layer thickness, phosphor concentrations, phosphor ratio, film structure, and sintering process. The YAG-PiGF achieves a high luminous flux (LF) of 1129 lm and a Ra of 62. Further addition of CASN and LuAGG phosphors fills the color gaps, resulting in a composite PiGF with a high Ra of 92 and a LE of 212 lm W<small><sup>−1</sup></small>. The excellent balance between Ra and LE makes this color converter highly promising for high-quality laser lighting applications.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 14","pages":" 7402-7410"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05513f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Full-spectrum laser-driven white lighting shows promise for high-luminance solid-state illumination and is highly desirable for lighting application domains such as education, healthcare, and residential lighting. However, obtaining both a high color rendering index (Ra) and high luminous efficiency (LE) concurrently poses a great challenge for the development of laser-driven white lighting. Herein, a novel tricolor phosphor-in-glass film (PiGF) is designed and fabricated via a facile low-temperature co-sintering strategy. ZnO–Li2O–SiO2 (ZLS) glass along with Y3Al5O12:Ce3+ (YAG), CaAlSiN3:Eu2+ (CASN), and Lu3(Al, Ga)5O12:Ce3+ (LuAGG) phosphors was coated onto sapphire substrates via the blade-coating method and then subjected to low-temperature co-firing, fabricating composite phosphor-in-glass film (PiGF) samples for full-spectrum laser-driven white lighting. High LE and Ra were achieved by optimizing the glass layer thickness, phosphor concentrations, phosphor ratio, film structure, and sintering process. The YAG-PiGF achieves a high luminous flux (LF) of 1129 lm and a Ra of 62. Further addition of CASN and LuAGG phosphors fills the color gaps, resulting in a composite PiGF with a high Ra of 92 and a LE of 212 lm W−1. The excellent balance between Ra and LE makes this color converter highly promising for high-quality laser lighting applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信