Construction of S-scheme CoMn2O4/ZnCdS p–n heterojunction for enhanced photocatalytic hydrogen production

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qingzhuo Li, Fei Jin, Jiajia Liu, Peizhen Wang, Bolin Yang and Zhiliang Jin
{"title":"Construction of S-scheme CoMn2O4/ZnCdS p–n heterojunction for enhanced photocatalytic hydrogen production","authors":"Qingzhuo Li, Fei Jin, Jiajia Liu, Peizhen Wang, Bolin Yang and Zhiliang Jin","doi":"10.1039/D5TC00393H","DOIUrl":null,"url":null,"abstract":"<p >Constructing p–n heterojunctions serves as a powerful strategy for boosting the generation and separation of photogenerated carriers, thereby promoting the photocatalytic production of hydrogen. This step is crucial for optimizing the performance of the photocatalytic hydrogen production. In the current research, a p–n type heterojunction photocatalyst, ZnCdS/CoMn<small><sub>2</sub></small>O<small><sub>4</sub></small>, with S-scheme heterojunction characteristics, was successfully synthesized. The optimized composite ZnCdS/CoMn<small><sub>2</sub></small>O<small><sub>4</sub></small> demonstrated a 4.76-fold increase in hydrogen production compared to ZnCdS alone and exhibited excellent catalytic activity. Further characterization using techniques, like <em>in situ</em> XPS and DFT calculations, revealed that the p–n type heterojunction effectively promoted the separation of photogenerated electron–hole pairs, a key step for efficient hydrogen production. Furthermore, the enhanced redox capacity of the composite photocatalyst was confirmed by electron paramagnetic resonance analysis. The broadened light absorption range of the composite photocatalyst was also demonstrated, providing an ample number of active sites. This study offers insights into p–n photocatalysts with S-scheme heterojunction properties and proposes a promising approach for designing p–n heterojunctions to enhance photocatalytic hydrogen production.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 14","pages":" 7380-7392"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00393h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing p–n heterojunctions serves as a powerful strategy for boosting the generation and separation of photogenerated carriers, thereby promoting the photocatalytic production of hydrogen. This step is crucial for optimizing the performance of the photocatalytic hydrogen production. In the current research, a p–n type heterojunction photocatalyst, ZnCdS/CoMn2O4, with S-scheme heterojunction characteristics, was successfully synthesized. The optimized composite ZnCdS/CoMn2O4 demonstrated a 4.76-fold increase in hydrogen production compared to ZnCdS alone and exhibited excellent catalytic activity. Further characterization using techniques, like in situ XPS and DFT calculations, revealed that the p–n type heterojunction effectively promoted the separation of photogenerated electron–hole pairs, a key step for efficient hydrogen production. Furthermore, the enhanced redox capacity of the composite photocatalyst was confirmed by electron paramagnetic resonance analysis. The broadened light absorption range of the composite photocatalyst was also demonstrated, providing an ample number of active sites. This study offers insights into p–n photocatalysts with S-scheme heterojunction properties and proposes a promising approach for designing p–n heterojunctions to enhance photocatalytic hydrogen production.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信