Mengqi Lyu, Jueran Cao, Baoling Tang, Tianrui Li, Mingkai Wei, Haoran Zhang, Xuejie Zhang, Mingtao Zheng, Maxim S. Molokeev and Bingfu Lei
{"title":"Broadband and high internal quantum efficiency near-infrared phosphors obtained utilizing a chemical unit co-substitution strategy for plant lighting†","authors":"Mengqi Lyu, Jueran Cao, Baoling Tang, Tianrui Li, Mingkai Wei, Haoran Zhang, Xuejie Zhang, Mingtao Zheng, Maxim S. Molokeev and Bingfu Lei","doi":"10.1039/D5TC00206K","DOIUrl":null,"url":null,"abstract":"<p >Near-infrared phosphor-converted light-emitting diodes (NIR pc-LEDs) have been widely used in plant cultivation. However, exploring NIR phosphors with specific wavelengths and high efficiency is still the main task. In this paper, a NIR phosphor, Lu<small><sub>3</sub></small>Ga<small><sub>5−2<em>x</em></sub></small>Mg<small><sub><em>x</em></sub></small>Ge<small><sub><em>x</em></sub></small>O<small><sub>12</sub></small> (LGMG):0.05Cr<small><sup>3+</sup></small>, with an emission center wavelength of 726 nm was investigated. After employing the co-substitution strategy, it was found that the strength of the crystal field in the vicinity of Cr<small><sup>3+</sup></small> gradually weakened, resulting in broadening of the emission spectrum to the full width at half maximum (FWHM) of 155 nm. Notably, the developed phosphors have high IQE values and relatively better thermal stability. After optimization, the absorption spectrum of the obtained broadband near-infrared luminescent phosphor showed a high degree of matching with the absorption spectrum of the phytochrome P<small><sub>FR</sub></small>. NIR pc-LEDs devices were successfully prepared by combining the LGMG:Cr<small><sup>3+</sup></small> phosphor with commercialized blue LED chips. This phosphor has potential applications in plant lighting to promote plant growth.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 14","pages":" 7343-7351"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00206k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Near-infrared phosphor-converted light-emitting diodes (NIR pc-LEDs) have been widely used in plant cultivation. However, exploring NIR phosphors with specific wavelengths and high efficiency is still the main task. In this paper, a NIR phosphor, Lu3Ga5−2xMgxGexO12 (LGMG):0.05Cr3+, with an emission center wavelength of 726 nm was investigated. After employing the co-substitution strategy, it was found that the strength of the crystal field in the vicinity of Cr3+ gradually weakened, resulting in broadening of the emission spectrum to the full width at half maximum (FWHM) of 155 nm. Notably, the developed phosphors have high IQE values and relatively better thermal stability. After optimization, the absorption spectrum of the obtained broadband near-infrared luminescent phosphor showed a high degree of matching with the absorption spectrum of the phytochrome PFR. NIR pc-LEDs devices were successfully prepared by combining the LGMG:Cr3+ phosphor with commercialized blue LED chips. This phosphor has potential applications in plant lighting to promote plant growth.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors