Thermal conduction-induced crystallization and achieving high efficiency in HTM-free carbon-based CsPbI2Br solar cells by regulating the dipole moment of aliphatic amine acetate additives†
IF 5.7 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Thermal conduction-induced crystallization and achieving high efficiency in HTM-free carbon-based CsPbI2Br solar cells by regulating the dipole moment of aliphatic amine acetate additives†","authors":"Xinlong Zhang, Jincheng Huang, Hengzhi Zuo, Yuanfang Zhang, Yuhang Guo, Yifei Shi, Jianlin Chen, Guijun Li, Wei Li and Zhuoyin Peng","doi":"10.1039/D4TC04760E","DOIUrl":null,"url":null,"abstract":"<p >Despite the advancements in film fabrication techniques for emerging perovskite solar cells, achieving a high-quality film by solution processing, while maintaining considerable performance remains a significant challenge. To tackle the issue of inferior CsPbI<small><sub>2</sub></small>Br perovskite films deposited <em>via</em> solution-based methods, a novel thermal conduction heating approach was devised and implemented, significantly enhancing film uniformity. Crucially, aliphatic amine acetates (3A) were introduced into the precursor solution to regulate the crystallization process and therefore to mitigate defects. Systematic investigation into the impact of 3A molecules featuring varying alkyl chain lengths on defect passivation revealed that the molecular dipole moment of these additives contributed to both defect mitigation and grain size refinement. Notably, the integration of alkyl chains significantly bolstered the hydrophobic properties of the perovskite film. Consequently, an impressive efficiency of 13.50% for HTM-free carbon-based CsPbI<small><sub>2</sub></small>Br perovskite solar cells was achieved, and the device exhibited robust stability retaining 92.4% of its initial efficiency at room temperature after being stored in dry air for 5400 h. This research offers profound insights into defect passivation mechanisms and perovskite crystallization dynamics, paving the way for further advancements in the field of perovskite solar cell technology.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 14","pages":" 7071-7081"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04760e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the advancements in film fabrication techniques for emerging perovskite solar cells, achieving a high-quality film by solution processing, while maintaining considerable performance remains a significant challenge. To tackle the issue of inferior CsPbI2Br perovskite films deposited via solution-based methods, a novel thermal conduction heating approach was devised and implemented, significantly enhancing film uniformity. Crucially, aliphatic amine acetates (3A) were introduced into the precursor solution to regulate the crystallization process and therefore to mitigate defects. Systematic investigation into the impact of 3A molecules featuring varying alkyl chain lengths on defect passivation revealed that the molecular dipole moment of these additives contributed to both defect mitigation and grain size refinement. Notably, the integration of alkyl chains significantly bolstered the hydrophobic properties of the perovskite film. Consequently, an impressive efficiency of 13.50% for HTM-free carbon-based CsPbI2Br perovskite solar cells was achieved, and the device exhibited robust stability retaining 92.4% of its initial efficiency at room temperature after being stored in dry air for 5400 h. This research offers profound insights into defect passivation mechanisms and perovskite crystallization dynamics, paving the way for further advancements in the field of perovskite solar cell technology.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors