Thermal conduction-induced crystallization and achieving high efficiency in HTM-free carbon-based CsPbI2Br solar cells by regulating the dipole moment of aliphatic amine acetate additives†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinlong Zhang, Jincheng Huang, Hengzhi Zuo, Yuanfang Zhang, Yuhang Guo, Yifei Shi, Jianlin Chen, Guijun Li, Wei Li and Zhuoyin Peng
{"title":"Thermal conduction-induced crystallization and achieving high efficiency in HTM-free carbon-based CsPbI2Br solar cells by regulating the dipole moment of aliphatic amine acetate additives†","authors":"Xinlong Zhang, Jincheng Huang, Hengzhi Zuo, Yuanfang Zhang, Yuhang Guo, Yifei Shi, Jianlin Chen, Guijun Li, Wei Li and Zhuoyin Peng","doi":"10.1039/D4TC04760E","DOIUrl":null,"url":null,"abstract":"<p >Despite the advancements in film fabrication techniques for emerging perovskite solar cells, achieving a high-quality film by solution processing, while maintaining considerable performance remains a significant challenge. To tackle the issue of inferior CsPbI<small><sub>2</sub></small>Br perovskite films deposited <em>via</em> solution-based methods, a novel thermal conduction heating approach was devised and implemented, significantly enhancing film uniformity. Crucially, aliphatic amine acetates (3A) were introduced into the precursor solution to regulate the crystallization process and therefore to mitigate defects. Systematic investigation into the impact of 3A molecules featuring varying alkyl chain lengths on defect passivation revealed that the molecular dipole moment of these additives contributed to both defect mitigation and grain size refinement. Notably, the integration of alkyl chains significantly bolstered the hydrophobic properties of the perovskite film. Consequently, an impressive efficiency of 13.50% for HTM-free carbon-based CsPbI<small><sub>2</sub></small>Br perovskite solar cells was achieved, and the device exhibited robust stability retaining 92.4% of its initial efficiency at room temperature after being stored in dry air for 5400 h. This research offers profound insights into defect passivation mechanisms and perovskite crystallization dynamics, paving the way for further advancements in the field of perovskite solar cell technology.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 14","pages":" 7071-7081"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04760e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the advancements in film fabrication techniques for emerging perovskite solar cells, achieving a high-quality film by solution processing, while maintaining considerable performance remains a significant challenge. To tackle the issue of inferior CsPbI2Br perovskite films deposited via solution-based methods, a novel thermal conduction heating approach was devised and implemented, significantly enhancing film uniformity. Crucially, aliphatic amine acetates (3A) were introduced into the precursor solution to regulate the crystallization process and therefore to mitigate defects. Systematic investigation into the impact of 3A molecules featuring varying alkyl chain lengths on defect passivation revealed that the molecular dipole moment of these additives contributed to both defect mitigation and grain size refinement. Notably, the integration of alkyl chains significantly bolstered the hydrophobic properties of the perovskite film. Consequently, an impressive efficiency of 13.50% for HTM-free carbon-based CsPbI2Br perovskite solar cells was achieved, and the device exhibited robust stability retaining 92.4% of its initial efficiency at room temperature after being stored in dry air for 5400 h. This research offers profound insights into defect passivation mechanisms and perovskite crystallization dynamics, paving the way for further advancements in the field of perovskite solar cell technology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信