Raphael Fortulan, Noushin Raeisi Kheirabadi, Davin Browner, Alessandro Chiolerio and Andrew Adamatzky
{"title":"Sustainable reservoir computing with liquid egg albumen","authors":"Raphael Fortulan, Noushin Raeisi Kheirabadi, Davin Browner, Alessandro Chiolerio and Andrew Adamatzky","doi":"10.1039/D4TC05233A","DOIUrl":null,"url":null,"abstract":"<p >While physical reservoir computing offers a promising approach for efficient information processing, identifying suitable substrates remains challenging. Here, we demonstrated that colloidal albumen proteins could function as an effective physical reservoir for classifying multivariate datasets and electrocardiogram (ECG) signals. We exploited the nonlinear dynamics of protein macromolecules and ions in the albumen to perform high-dimensional mappings of input data. Our albumen-based reservoir achieved classification accuracy comparable to conventional machine learning methods on benchmark datasets while consuming over 5000 times less energy during training. Notably, the reservoir exhibited short-term plasticity analogous to biological synapses, with conductance spikes and fading memory. This bio-inspired computing paradigm not only offered a sustainable alternative to traditional architectures but also provided insights into the information-processing capabilities of biological systems. Our findings opened new avenues for low-power, environmentally friendly computing solutions with potential applications in real-time health monitoring and edge computing.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 14","pages":" 7411-7419"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d4tc05233a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05233a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While physical reservoir computing offers a promising approach for efficient information processing, identifying suitable substrates remains challenging. Here, we demonstrated that colloidal albumen proteins could function as an effective physical reservoir for classifying multivariate datasets and electrocardiogram (ECG) signals. We exploited the nonlinear dynamics of protein macromolecules and ions in the albumen to perform high-dimensional mappings of input data. Our albumen-based reservoir achieved classification accuracy comparable to conventional machine learning methods on benchmark datasets while consuming over 5000 times less energy during training. Notably, the reservoir exhibited short-term plasticity analogous to biological synapses, with conductance spikes and fading memory. This bio-inspired computing paradigm not only offered a sustainable alternative to traditional architectures but also provided insights into the information-processing capabilities of biological systems. Our findings opened new avenues for low-power, environmentally friendly computing solutions with potential applications in real-time health monitoring and edge computing.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors