A Multi-Mode Configurable Physical Unclonable Function Based on RRAM With Adjustable Programmable Voltage

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yijun Cui;Jiang Li;Chongyan Gu;Chenghua Wang;Weiqiang Liu
{"title":"A Multi-Mode Configurable Physical Unclonable Function Based on RRAM With Adjustable Programmable Voltage","authors":"Yijun Cui;Jiang Li;Chongyan Gu;Chenghua Wang;Weiqiang Liu","doi":"10.1109/TNANO.2025.3552433","DOIUrl":null,"url":null,"abstract":"Resistive random access memory (RRAM) presents a promising solution for energy-efficient logic-in-memory (LiM) systems. This paper introduces a Multi-mode Configurable Physical Unclonable Function (MC-PUF) tailored for secure RRAM-based LiM applications, utilizing a conventional one-transistor-one-RRAM (1T1R) array. The MC-PUF operates in multiple modes by modifying the programming voltages of the RRAM, which captures the distinct variations of each RRAM under varying conditions. In weak write mode, the MC-PUF exploits the inherent variations of RRAM by setting the programming voltages to achieve a 50% switching probability, thereby randomly assigning ‘0’ or ‘1’ states. In parallel competition mode, it generates responses by selecting two parallel RRAMs, with one remaining in a high resistance state (HRS) and the other switching to a low resistance state (LRS). This configuration allows the MC-PUF to generate more challenge-response pairs (CRPs) compared to conventional designs, thus enhancing security through increased entropy. The design was validated through simulations using a compact Spice model and the UMC 55 nm CMOS library, as well as on an experimental hardware platform with commercial RRAM chips. Results from both simulations and hardware implementations indicate that the proposed MC-PUF exhibits high reliability, excellent uniqueness, and superior configurability.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"166-177"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10930800/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Resistive random access memory (RRAM) presents a promising solution for energy-efficient logic-in-memory (LiM) systems. This paper introduces a Multi-mode Configurable Physical Unclonable Function (MC-PUF) tailored for secure RRAM-based LiM applications, utilizing a conventional one-transistor-one-RRAM (1T1R) array. The MC-PUF operates in multiple modes by modifying the programming voltages of the RRAM, which captures the distinct variations of each RRAM under varying conditions. In weak write mode, the MC-PUF exploits the inherent variations of RRAM by setting the programming voltages to achieve a 50% switching probability, thereby randomly assigning ‘0’ or ‘1’ states. In parallel competition mode, it generates responses by selecting two parallel RRAMs, with one remaining in a high resistance state (HRS) and the other switching to a low resistance state (LRS). This configuration allows the MC-PUF to generate more challenge-response pairs (CRPs) compared to conventional designs, thus enhancing security through increased entropy. The design was validated through simulations using a compact Spice model and the UMC 55 nm CMOS library, as well as on an experimental hardware platform with commercial RRAM chips. Results from both simulations and hardware implementations indicate that the proposed MC-PUF exhibits high reliability, excellent uniqueness, and superior configurability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信