Haichang Yin , Zunhe Du , Xinjie Jiang , Yao Zhou , Zhenhua Jin , Feng Cong
{"title":"Butyric acid from ligilactobacillus animalis 2020MB acts on membrane BamA to control avian pathogenic escherichia coli","authors":"Haichang Yin , Zunhe Du , Xinjie Jiang , Yao Zhou , Zhenhua Jin , Feng Cong","doi":"10.1016/j.psj.2025.105119","DOIUrl":null,"url":null,"abstract":"<div><div>Avian pathogenic <em>Escherichia coli</em> can cause high morbidity, mortality, and serious economic losses to the global poultry industry. Lactic acid bacteria inhibit the growth of many pathogens, including <em>E. coli</em>, but the underlying mechanism remains unclear. In this study, we investigated the effect of the cell-free supernatant of <em>Ligilactobacillus animalis</em> 2020MB isolated from the intestinal tract of chickens on specific pathogen-free chickens infected with <em>E. coli</em>. The cell-free supernatant-induced inhibition of <em>E. coli</em> infection was determined through clinical symptom observation, pathological analysis, and qPCR. Protease and heat treatments did not affect the antibacterial activity of cell-free supernatant, suggesting that an organic acid was the antibacterial substance. Liquid chromatography–mass spectrometry and non-targeted metabolomics identified antibacterial activity for eight <em>L. animalis</em> 2020MB cell-free supernatant metabolites, including butyric, valeric, and succinic acids. The inhibitory activity of butyric acid was quantified by determining the minimal inhibitory concentration. Scanning electron microscopy, laser confocal microscopy, and proteomic analysis revealed that butyric acid altered the morphology and impaired the cell envelope integrity of target bacteria, leading to leakage of intracellular contents. BamA was identified as the membrane protein target for butyric acid. The findings reveal the molecular mechanism of action of <em>L. animalis</em> 2020MB in the chicken intestine against <em>E. coli</em>.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 6","pages":"Article 105119"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003257912500358X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Avian pathogenic Escherichia coli can cause high morbidity, mortality, and serious economic losses to the global poultry industry. Lactic acid bacteria inhibit the growth of many pathogens, including E. coli, but the underlying mechanism remains unclear. In this study, we investigated the effect of the cell-free supernatant of Ligilactobacillus animalis 2020MB isolated from the intestinal tract of chickens on specific pathogen-free chickens infected with E. coli. The cell-free supernatant-induced inhibition of E. coli infection was determined through clinical symptom observation, pathological analysis, and qPCR. Protease and heat treatments did not affect the antibacterial activity of cell-free supernatant, suggesting that an organic acid was the antibacterial substance. Liquid chromatography–mass spectrometry and non-targeted metabolomics identified antibacterial activity for eight L. animalis 2020MB cell-free supernatant metabolites, including butyric, valeric, and succinic acids. The inhibitory activity of butyric acid was quantified by determining the minimal inhibitory concentration. Scanning electron microscopy, laser confocal microscopy, and proteomic analysis revealed that butyric acid altered the morphology and impaired the cell envelope integrity of target bacteria, leading to leakage of intracellular contents. BamA was identified as the membrane protein target for butyric acid. The findings reveal the molecular mechanism of action of L. animalis 2020MB in the chicken intestine against E. coli.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.