Qi Liu , Yuyang Liu , Hui Feng , Ning Zhang , Zhanyu Yang
{"title":"High salt diet causally increases metabolic dysfunction-associated steatotic liver disease risk: A bidirectional mendelian randomization study","authors":"Qi Liu , Yuyang Liu , Hui Feng , Ning Zhang , Zhanyu Yang","doi":"10.1016/j.nutres.2025.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver disorder associated with metabolic and lifestyle factors, affecting approximately 25% of the global population. Although high salt intake has been implicated as a potential dietary risk factor, its causal relationship with MASLD remains uncertain. We hypothesized that genetic liability to higher salt intake causally increases the risk of MASLD. To address this, bidirectional Mendelian Randomization (MR) analysis was performed to evaluate the causal relationship between “salt added to food” and MASLD. Genetic variants were used as instrumental variables across large-scale genome-wide association study datasets from the UK Biobank and multiple MASLD cohorts. The inverse variance weighting method served as the primary analytical approach, with sensitivity analyses, including MR-Egger and MR-PRESSO, to evaluate pleiotropy and heterogeneity. Forward MR analysis demonstrated a significant association between “salt added to food” and increased MASLD risk across three MASLD datasets: odds ratio (OR) = 1.538, 95% confidence interval (CI): 1.145-2.067, <em>P</em> = .004; OR = 1.787, 95% CI: 1.247-2.561, <em>P</em> = .002; and OR = 2.094, 95% CI: 1.274-3.442, <em>P</em> = .004. Sensitivity analyses indicated low heterogeneity and no evidence of pleiotropy. Reverse MR analysis did not demonstrate a causal effect of MASLD on “salt added to food”. These findings provide robust genetic evidence that “salt added to food” is a causal risk factor for MASLD, emphasizing the importance of dietary salt reduction in MASLD prevention strategies. This study supports public health recommendations advocating reduced salt intake to promote liver health and prevent MASLD.</div></div>","PeriodicalId":19245,"journal":{"name":"Nutrition Research","volume":"136 ","pages":"Pages 94-104"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0271531725000399","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver disorder associated with metabolic and lifestyle factors, affecting approximately 25% of the global population. Although high salt intake has been implicated as a potential dietary risk factor, its causal relationship with MASLD remains uncertain. We hypothesized that genetic liability to higher salt intake causally increases the risk of MASLD. To address this, bidirectional Mendelian Randomization (MR) analysis was performed to evaluate the causal relationship between “salt added to food” and MASLD. Genetic variants were used as instrumental variables across large-scale genome-wide association study datasets from the UK Biobank and multiple MASLD cohorts. The inverse variance weighting method served as the primary analytical approach, with sensitivity analyses, including MR-Egger and MR-PRESSO, to evaluate pleiotropy and heterogeneity. Forward MR analysis demonstrated a significant association between “salt added to food” and increased MASLD risk across three MASLD datasets: odds ratio (OR) = 1.538, 95% confidence interval (CI): 1.145-2.067, P = .004; OR = 1.787, 95% CI: 1.247-2.561, P = .002; and OR = 2.094, 95% CI: 1.274-3.442, P = .004. Sensitivity analyses indicated low heterogeneity and no evidence of pleiotropy. Reverse MR analysis did not demonstrate a causal effect of MASLD on “salt added to food”. These findings provide robust genetic evidence that “salt added to food” is a causal risk factor for MASLD, emphasizing the importance of dietary salt reduction in MASLD prevention strategies. This study supports public health recommendations advocating reduced salt intake to promote liver health and prevent MASLD.
期刊介绍:
Nutrition Research publishes original research articles, communications, and reviews on basic and applied nutrition. The mission of Nutrition Research is to serve as the journal for global communication of nutrition and life sciences research on diet and health. The field of nutrition sciences includes, but is not limited to, the study of nutrients during growth, reproduction, aging, health, and disease.
Articles covering basic and applied research on all aspects of nutrition sciences are encouraged, including: nutritional biochemistry and metabolism; metabolomics, nutrient gene interactions; nutrient requirements for health; nutrition and disease; digestion and absorption; nutritional anthropology; epidemiology; the influence of socioeconomic and cultural factors on nutrition of the individual and the community; the impact of nutrient intake on disease response and behavior; the consequences of nutritional deficiency on growth and development, endocrine and nervous systems, and immunity; nutrition and gut microbiota; food intolerance and allergy; nutrient drug interactions; nutrition and aging; nutrition and cancer; obesity; diabetes; and intervention programs.