Jian Wang, Zhuowen Zou, Jiajun Zhu, Dandan Gao, Wanbiao Hu
{"title":"Configuration and Charge Dynamics of Defect-Cluster-Dipoles in CaTiO3 for Enhanced Permittivity","authors":"Jian Wang, Zhuowen Zou, Jiajun Zhu, Dandan Gao, Wanbiao Hu","doi":"10.1002/aelm.202500145","DOIUrl":null,"url":null,"abstract":"The wealth of complex defects induces attractive functionalities and structural variations in materials. This renders engineering defect states, as well as building up a defect-property relationship, a central subject, but it remains highly challenging because the configurations and charge dynamics of the involved defect systems are hardly explored and thus unclear experimentally. Herein, the defect-dipole-cluster in La-doped CaTiO<sub>3</sub> and, more importantly, its dielectric response process is clarified. Through combined HAADF-STEM, DFT calculation, dielectric, and photoluminescence (PL) spectroscopy, the defect configuration is identified to be <i>V</i><sub><b>Ca</b></sub> − <b>O</b><sup>−</sup> − <b>La</b><sub><b>Ca</b></sub> type defect-cluster-dipole. The electron–hole recombination from the Ti<sup>3+</sup> and O<sup>−</sup> states dominates the dielectric relaxation process, as revealed by the similar relaxation frequencies of dielectric response and photoluminescence emission. These findings experimentally demonstrate property tailoring involved in defect-cluster-dipole, providing crucial insights for establishing the defect-property relationship in dielectric materials.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"21 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500145","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The wealth of complex defects induces attractive functionalities and structural variations in materials. This renders engineering defect states, as well as building up a defect-property relationship, a central subject, but it remains highly challenging because the configurations and charge dynamics of the involved defect systems are hardly explored and thus unclear experimentally. Herein, the defect-dipole-cluster in La-doped CaTiO3 and, more importantly, its dielectric response process is clarified. Through combined HAADF-STEM, DFT calculation, dielectric, and photoluminescence (PL) spectroscopy, the defect configuration is identified to be VCa − O− − LaCa type defect-cluster-dipole. The electron–hole recombination from the Ti3+ and O− states dominates the dielectric relaxation process, as revealed by the similar relaxation frequencies of dielectric response and photoluminescence emission. These findings experimentally demonstrate property tailoring involved in defect-cluster-dipole, providing crucial insights for establishing the defect-property relationship in dielectric materials.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.