FOCERS: An Ultrasensitive and Robust Soft Optical 3D Tactile Sensor.

Zhengwei Li, Long Cheng, Zeyu Liu, Jiachen Wei, Yifan Wang
{"title":"FOCERS: An Ultrasensitive and Robust Soft Optical 3D Tactile Sensor.","authors":"Zhengwei Li, Long Cheng, Zeyu Liu, Jiachen Wei, Yifan Wang","doi":"10.1089/soro.2024.0053","DOIUrl":null,"url":null,"abstract":"<p><p>Soft optical sensors, characterized by excellent stability, strong anti-interference ability, and rapid response, are particularly suitable for exploring unknown environments. However, the low sensitivity and large size of optical tactile sensors have limited their widespread application. This study presents an ultrasensitive, highly linear, and highly robust three-dimensional (3D) tactile sensor based on a Foldable Optical Circuit Embedded in Rigid-Soft-coupled (FOCERS) structure. This sensor exhibits a high sensitivity of 1228.7 kPa<sup>-1</sup> under normal pressure of 5 kPa, a super high sensitivity of 7399.5 kPa<sup>-1</sup> under a sheer pressure of 1.5 kPa, and a fast response time of 5 ms. Under normal pressure conditions, the sensors exhibited high linearity performance across the entire sensing range, with linearity reaching up to 95.3%. The rigid-soft-coupled structure enhances the robustness and overload resistance of the sensor (withstanding 50 times the sensing range). Demonstrations show that the FOCERS structure can detect minute pressure variations (induced by sesame seeds) and withstand extreme pressures (such as being run over by a car). Furthermore, we designed a joystick based on FOCERS for force detection in human-machine interactions. This study provides a new structure for optical sensors to increase both sensitivity and robustness, and also provides a convenient way to fabricate 3D tactile sensors.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soft optical sensors, characterized by excellent stability, strong anti-interference ability, and rapid response, are particularly suitable for exploring unknown environments. However, the low sensitivity and large size of optical tactile sensors have limited their widespread application. This study presents an ultrasensitive, highly linear, and highly robust three-dimensional (3D) tactile sensor based on a Foldable Optical Circuit Embedded in Rigid-Soft-coupled (FOCERS) structure. This sensor exhibits a high sensitivity of 1228.7 kPa-1 under normal pressure of 5 kPa, a super high sensitivity of 7399.5 kPa-1 under a sheer pressure of 1.5 kPa, and a fast response time of 5 ms. Under normal pressure conditions, the sensors exhibited high linearity performance across the entire sensing range, with linearity reaching up to 95.3%. The rigid-soft-coupled structure enhances the robustness and overload resistance of the sensor (withstanding 50 times the sensing range). Demonstrations show that the FOCERS structure can detect minute pressure variations (induced by sesame seeds) and withstand extreme pressures (such as being run over by a car). Furthermore, we designed a joystick based on FOCERS for force detection in human-machine interactions. This study provides a new structure for optical sensors to increase both sensitivity and robustness, and also provides a convenient way to fabricate 3D tactile sensors.

FOCERS:一种超灵敏、鲁棒的软光学3D触觉传感器。
软光学传感器具有稳定性好、抗干扰能力强、响应速度快等特点,特别适用于探索未知环境。但光学触觉传感器的灵敏度低、尺寸大等缺点限制了其广泛应用。本研究提出了一种基于嵌入刚软耦合(FOCERS)结构的可折叠光学电路的超灵敏、高线性和高鲁棒性三维(3D)触觉传感器。该传感器在5 kPa的常压下具有1228.7 kPa-1的高灵敏度,在1.5 kPa的绝对压力下具有7399.5 kPa-1的超高灵敏度,响应时间为5 ms。在常压条件下,传感器在整个传感范围内均表现出较高的线性度,线性度可达95.3%。刚软耦合结构增强了传感器的鲁棒性和抗过载能力(可承受50倍的传感范围)。演示表明,FOCERS结构可以检测到微小的压力变化(由芝麻引起),并承受极端压力(如被汽车碾过)。此外,我们还设计了一种基于FOCERS的操纵杆,用于人机交互中的力检测。该研究为光学传感器提供了一种新的结构,提高了灵敏度和鲁棒性,也为三维触觉传感器的制作提供了一种方便的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信