Jickky Palmae Sarathy, Min Xie, Chui Fann Wong, Dereje A Negatu, Suyapa Rodriguez, Matthew D Zimmerman, Diana C Jimenez, Ilham M Alshiraihi, Mercedes Gonzalez-Juarrero, Véronique Dartois, Thomas Dick
{"title":"Toward a Bactericidal Oral Drug Combination for the Treatment of <i>Mycobacterium abscessus</i> Lung Disease.","authors":"Jickky Palmae Sarathy, Min Xie, Chui Fann Wong, Dereje A Negatu, Suyapa Rodriguez, Matthew D Zimmerman, Diana C Jimenez, Ilham M Alshiraihi, Mercedes Gonzalez-Juarrero, Véronique Dartois, Thomas Dick","doi":"10.1021/acsinfecdis.4c00948","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment of <i>Mycobacterium abscessus</i> lung disease relies on underperforming drug combinations and includes parenteral, poorly tolerated, and bacteriostatic antibiotics. We posit that safe, oral, and bactericidal regimens are needed to improve cure rates and shorten treatment. Here, we combined oral representatives of three well-tolerated bactericidal drug classes, the β-lactam tebipenem (together with the β-lactamase inhibitor avibactam), the fluoroquinolone moxifloxacin, and the rifamycin rifabutin, and profiled the combination in vitro and in vivo. The combination potentiated bactericidal activity of its components against replicating <i>M. abscessus</i> and retained bactericidal activity against the nonreplicating, drug-tolerant form of the bacterium residing in surrogate caseum. When combined, the drugs retained the ability to induce lethal secondary effects associated with the β-lactam and fluoroquinolone, including cell wall and DNA damage, increased metabolism, and generation of reactive oxygen species. Thus, the triple-drug combination appears to exert two lethal punches while suppressing bacterial reprogramming to counter the drug-induced stresses, providing a plausible rationale for the enhanced kill effect. Addition of a bacteriostatic agent resulted in drug-specific patterns of interactions with regards to bactericidal activity reflected by the lethal secondary effects. The triple-drug combination also exerted a pronounced postantibiotic effect and reduced emergence of spontaneous resistant mutants. Collectively, this work provides a combination prototype for optimization and a profiling workflow that may be useful for the development of sterilizing regimens.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00948","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Treatment of Mycobacterium abscessus lung disease relies on underperforming drug combinations and includes parenteral, poorly tolerated, and bacteriostatic antibiotics. We posit that safe, oral, and bactericidal regimens are needed to improve cure rates and shorten treatment. Here, we combined oral representatives of three well-tolerated bactericidal drug classes, the β-lactam tebipenem (together with the β-lactamase inhibitor avibactam), the fluoroquinolone moxifloxacin, and the rifamycin rifabutin, and profiled the combination in vitro and in vivo. The combination potentiated bactericidal activity of its components against replicating M. abscessus and retained bactericidal activity against the nonreplicating, drug-tolerant form of the bacterium residing in surrogate caseum. When combined, the drugs retained the ability to induce lethal secondary effects associated with the β-lactam and fluoroquinolone, including cell wall and DNA damage, increased metabolism, and generation of reactive oxygen species. Thus, the triple-drug combination appears to exert two lethal punches while suppressing bacterial reprogramming to counter the drug-induced stresses, providing a plausible rationale for the enhanced kill effect. Addition of a bacteriostatic agent resulted in drug-specific patterns of interactions with regards to bactericidal activity reflected by the lethal secondary effects. The triple-drug combination also exerted a pronounced postantibiotic effect and reduced emergence of spontaneous resistant mutants. Collectively, this work provides a combination prototype for optimization and a profiling workflow that may be useful for the development of sterilizing regimens.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.