Leiji Li , Shiyu He , Fei Xiao , Yi Zeng , Yang Liu , Ying Zhou , Xiaorong Cai , Xuejun Jin
{"title":"Cooling innovations: Elastocaloric shape memory alloys, manufacturing, simulation, and refrigerator","authors":"Leiji Li , Shiyu He , Fei Xiao , Yi Zeng , Yang Liu , Ying Zhou , Xiaorong Cai , Xuejun Jin","doi":"10.1016/j.pmatsci.2025.101477","DOIUrl":null,"url":null,"abstract":"<div><div>Elastocaloric (eC) cooling, driven by the elastocaloric effect (eCE) in shape memory alloys (SMAs), presents a sustainable and efficient alternative to conventional refrigeration technologies. This review provides a comprehensive overview of recent advancements in eC cooling, covering fundamental principles, thermodynamics, and material performance. The discussion includes the mechanisms of eCE, martensitic transformations in various SMA systems (e.g., TiNi-based, Heusler-type, Cu-based, Fe-based), and key factors affecting cooling efficiency and cyclic stability. Advanced manufacturing techniques, including additive manufacturing, directional solidification, and heat treatments, are highlighted for their role in optimizing material properties. Additionally, the review explores multi-scale simulations and machine learning approaches for material design and performance prediction. The integration of eCE materials into prototypes is discussed, with a focus on thermodynamic cycles, prototype designs, performance evaluations, and potential applications. By addressing current challenges and opportunities, this work aims to guide future research and development toward the practical implementation of eC cooling technologies.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"153 ","pages":"Article 101477"},"PeriodicalIF":33.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525000520","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Elastocaloric (eC) cooling, driven by the elastocaloric effect (eCE) in shape memory alloys (SMAs), presents a sustainable and efficient alternative to conventional refrigeration technologies. This review provides a comprehensive overview of recent advancements in eC cooling, covering fundamental principles, thermodynamics, and material performance. The discussion includes the mechanisms of eCE, martensitic transformations in various SMA systems (e.g., TiNi-based, Heusler-type, Cu-based, Fe-based), and key factors affecting cooling efficiency and cyclic stability. Advanced manufacturing techniques, including additive manufacturing, directional solidification, and heat treatments, are highlighted for their role in optimizing material properties. Additionally, the review explores multi-scale simulations and machine learning approaches for material design and performance prediction. The integration of eCE materials into prototypes is discussed, with a focus on thermodynamic cycles, prototype designs, performance evaluations, and potential applications. By addressing current challenges and opportunities, this work aims to guide future research and development toward the practical implementation of eC cooling technologies.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.