Oxygen vacancy-driven interfacial alloying and mixing for enhanced heat transfer in gallium oxide

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bowen Wang, Baowen Wang, Hejin Yan, Yongqing Cai
{"title":"Oxygen vacancy-driven interfacial alloying and mixing for enhanced heat transfer in gallium oxide","authors":"Bowen Wang,&nbsp;Baowen Wang,&nbsp;Hejin Yan,&nbsp;Yongqing Cai","doi":"10.1016/j.mtphys.2025.101714","DOIUrl":null,"url":null,"abstract":"<div><div>β-Gallium oxide (β-Ga<sub>2</sub>O<sub>3</sub>) is a superior material for power electronic applications due to ultra-wide bandgap and high critical field strength. The bottlenecking issue for its application lies in promoting heat dissipation and robust interfacial contact. Opposite to the common notion that a clean interface leads to high thermal conductivity, here we demonstrate an opposite strategy with alloying the interface for a significantly promoted heat conduction. Through sophisticated machine learning-powered molecular dynamics simulations coupled with comprehensive density functional theory analyses, we demonstrate that oxygen vacancies (V<sub>O</sub>) serve as key facilitators of phonon coupling between β-Ga<sub>2</sub>O<sub>3</sub> and Au layers. The phonon density of states and spectral heat current analyses unveil a remarkable mechanism: V<sub>O</sub> catalyzes interfacial mixing due to inverted interfacial built-in electric field, generating an alloy-like transition region that effectively bridges the phonon mismatch and enables more efficient phonon transmission. Intermediate scattering function analysis reveals that while V<sub>O</sub> maintains long-range structural integrity (at <strong><em>q</em></strong> = 0.51 Å<sup>−1</sup>), it significantly modifies local atomic dynamics at shorter length scales. Our findings open new avenues for developing advanced heat dissipation strategies, offering crucial insights into the development of next-generation high-performance electronic systems.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"54 ","pages":"Article 101714"},"PeriodicalIF":10.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000707","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

β-Gallium oxide (β-Ga2O3) is a superior material for power electronic applications due to ultra-wide bandgap and high critical field strength. The bottlenecking issue for its application lies in promoting heat dissipation and robust interfacial contact. Opposite to the common notion that a clean interface leads to high thermal conductivity, here we demonstrate an opposite strategy with alloying the interface for a significantly promoted heat conduction. Through sophisticated machine learning-powered molecular dynamics simulations coupled with comprehensive density functional theory analyses, we demonstrate that oxygen vacancies (VO) serve as key facilitators of phonon coupling between β-Ga2O3 and Au layers. The phonon density of states and spectral heat current analyses unveil a remarkable mechanism: VO catalyzes interfacial mixing due to inverted interfacial built-in electric field, generating an alloy-like transition region that effectively bridges the phonon mismatch and enables more efficient phonon transmission. Intermediate scattering function analysis reveals that while VO maintains long-range structural integrity (at q = 0.51 Å−1), it significantly modifies local atomic dynamics at shorter length scales. Our findings open new avenues for developing advanced heat dissipation strategies, offering crucial insights into the development of next-generation high-performance electronic systems.
氧空位驱动的界面合金化和混合以增强氧化镓的传热能力
β-氧化镓(β-Ga2O3)具有超宽带隙和高临界磁场强度,是电力电子应用领域的理想材料。其应用的瓶颈问题在于促进散热和稳固的界面接触。与一般认为干净的界面会带来高热导率的观点相反,我们在这里展示了一种相反的策略,即通过合金化界面来显著促进热传导。通过复杂的机器学习驱动的分子动力学模拟以及全面的密度泛函理论分析,我们证明了氧空位(VO)是 β-Ga2O3 和金层之间声子耦合的关键促进因素。声子态密度和光谱热流分析揭示了一个非凡的机制:VO 因反向界面内置电场而催化了界面混合,产生了类似合金的过渡区域,从而有效地弥合了声子失配,实现了更高效的声子传输。中间散射函数分析表明,虽然 VO 保持了长程结构完整性(q = 0.51 Å-1),但它在较短的长度尺度上显著改变了局部原子动力学。我们的研究结果为开发先进的散热策略开辟了新途径,为开发新一代高性能电子系统提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信