Particle displacement refinement based on hybrid cross-correlation optical flow method with gradient constancy assumption.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Hu Li, Guanyu Yan, Haidong Zhu, Yan Feng, Jingjing He
{"title":"Particle displacement refinement based on hybrid cross-correlation optical flow method with gradient constancy assumption.","authors":"Hu Li, Guanyu Yan, Haidong Zhu, Yan Feng, Jingjing He","doi":"10.1063/5.0238355","DOIUrl":null,"url":null,"abstract":"<p><p>In particle image velocimetry (PIV), the brightness of a particle image sequence may change due to uneven laser intensity distribution and fluctuations in laser output. Consequently, the optical flow method (OFM), which relies on the brightness constancy assumption, becomes unsuitable. The traditional variational OFM is only accurate for small displacement fields but lacks robustness and accuracy when applied to PIV images with intensity variations. In this study, to address these issues, we improve the traditional cross-correlation OFM to establish a high-resolution hybrid cross-correlation optical flow method (CC-OFM) for particle images with large displacement and intensity variations. The data term, which combines the brightness constancy assumption with the gradient constancy assumption, compensates for the intensity changes between the particle image pairs. The proposed CC-OFM is quantitatively evaluated using both synthetic particle images and experimental particle images under various conditions, comparing the displacement results with those obtained using other methods. The results reveal that the proposed CC-OFM provides high accuracy and robustness for particle images with large displacement and intensity variations. Furthermore, its high spatial resolution allows it to capture flow details more effectively than the other methods.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0238355","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

In particle image velocimetry (PIV), the brightness of a particle image sequence may change due to uneven laser intensity distribution and fluctuations in laser output. Consequently, the optical flow method (OFM), which relies on the brightness constancy assumption, becomes unsuitable. The traditional variational OFM is only accurate for small displacement fields but lacks robustness and accuracy when applied to PIV images with intensity variations. In this study, to address these issues, we improve the traditional cross-correlation OFM to establish a high-resolution hybrid cross-correlation optical flow method (CC-OFM) for particle images with large displacement and intensity variations. The data term, which combines the brightness constancy assumption with the gradient constancy assumption, compensates for the intensity changes between the particle image pairs. The proposed CC-OFM is quantitatively evaluated using both synthetic particle images and experimental particle images under various conditions, comparing the displacement results with those obtained using other methods. The results reveal that the proposed CC-OFM provides high accuracy and robustness for particle images with large displacement and intensity variations. Furthermore, its high spatial resolution allows it to capture flow details more effectively than the other methods.

基于梯度常数假设的混合互相关光流法的粒子位移细化。
在粒子图像测速(PIV)中,由于激光强度分布的不均匀和激光输出的波动,粒子图像序列的亮度可能会发生变化。因此,依赖于亮度恒定假设的光流法(OFM)变得不适合。传统的变分OFM仅对小位移场具有精度,但对具有强度变化的PIV图像缺乏鲁棒性和精度。为了解决这些问题,本文对传统的相互关联光流法进行了改进,建立了一种高分辨率的混合相互关联光流法(CC-OFM),用于大位移和强度变化的颗粒图像。该数据项将亮度恒定假设与梯度恒定假设相结合,补偿了粒子图像对之间的强度变化。采用合成颗粒图像和实验颗粒图像对所提出的CC-OFM进行了定量评价,并将位移结果与其他方法进行了比较。结果表明,所提出的CC-OFM对具有较大位移和强度变化的颗粒图像具有较高的精度和鲁棒性。此外,它的高空间分辨率使其能够比其他方法更有效地捕获流细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信