Dynamic membrane changes and osmotic effects by sugar alcohols.

IF 6.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Lichun Chen, Feng Yao, Songwen Xue, Kuang Yao, Yun Huang, Huimin Zhao, Qiong Shao
{"title":"Dynamic membrane changes and osmotic effects by sugar alcohols.","authors":"Lichun Chen, Feng Yao, Songwen Xue, Kuang Yao, Yun Huang, Huimin Zhao, Qiong Shao","doi":"10.1038/s41538-025-00410-1","DOIUrl":null,"url":null,"abstract":"<p><p>Sugar alcohols are natural sweeteners with various physiological functions, commonly used in low-calorie foods and pharmaceuticals. Current research primarily focuses on their sweetening properties and metabolic effects, often overlooking their interactions with cell membranes. This study built a giant phospholipid vesicle model to examine vesicle deformation in erythritol (Ery) and xylitol (Xyl) environments. The permeation of these sugar alcohols through real cell membranes was also investigated. Fluorescence microscopy and zeta potential measurements showed that osmotic stress from concentration gradients disrupted vesicle membrane structure. Ery and Xyl reduced ROS levels in HEK-293 cells and influenced membrane permeability. Notably, Xyl increased vesicle adsorption on the cell membrane at the same concentration. The findings indicate that sugar alcohols interact with membrane lipids through hydrogen bonds or other non-covalent interactions, modifying cell membrane structure and properties, thus providing a theoretical foundation for understanding their role in physiological environments.</p>","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":"9 1","pages":"46"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955526/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1038/s41538-025-00410-1","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sugar alcohols are natural sweeteners with various physiological functions, commonly used in low-calorie foods and pharmaceuticals. Current research primarily focuses on their sweetening properties and metabolic effects, often overlooking their interactions with cell membranes. This study built a giant phospholipid vesicle model to examine vesicle deformation in erythritol (Ery) and xylitol (Xyl) environments. The permeation of these sugar alcohols through real cell membranes was also investigated. Fluorescence microscopy and zeta potential measurements showed that osmotic stress from concentration gradients disrupted vesicle membrane structure. Ery and Xyl reduced ROS levels in HEK-293 cells and influenced membrane permeability. Notably, Xyl increased vesicle adsorption on the cell membrane at the same concentration. The findings indicate that sugar alcohols interact with membrane lipids through hydrogen bonds or other non-covalent interactions, modifying cell membrane structure and properties, thus providing a theoretical foundation for understanding their role in physiological environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Science of Food
NPJ Science of Food FOOD SCIENCE & TECHNOLOGY-
CiteScore
7.50
自引率
1.60%
发文量
53
期刊介绍: npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信