Regression-based rectangular tolerance regions as reference regions in laboratory medicine.

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Journal of Applied Statistics Pub Date : 2024-10-08 eCollection Date: 2025-01-01 DOI:10.1080/02664763.2024.2411614
Iana Michelle L Garcia, Michael Daniel C Lucagbo
{"title":"Regression-based rectangular tolerance regions as reference regions in laboratory medicine.","authors":"Iana Michelle L Garcia, Michael Daniel C Lucagbo","doi":"10.1080/02664763.2024.2411614","DOIUrl":null,"url":null,"abstract":"<p><p>Reference ranges are invaluable in laboratory medicine, as these are indispensable tools for the interpretation of laboratory test results. When assessing measurements on a single analyte, univariate reference intervals are required. In many cases, however, measurements on several analytes are needed by medical practitioners to diagnose more complicated conditions such as kidney function or liver function. For such cases, it is recommended to use multivariate reference regions, which account for the cross-correlations among the analytes. Traditionally, multivariate reference regions (MRRs) have been constructed as ellipsoidal regions. The disadvantage of such regions is that they are unable to detect component-wise outlying measurements. Because of this, rectangular reference regions have recently been put forward in the literature. In this study, we develop methodologies to compute rectangular MRRs that incorporate covariate information, which are often necessary in evaluating laboratory test results. We construct the reference region using tolerance-based criteria so that the resulting region possesses the multiple use property. Results show that the proposed regions yield coverage probabilities that are accurate and are robust to the sample size. Finally, we apply the proposed procedures to a real-life example on the computation of an MRR for three components of the insulin-like growth factor system.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 5","pages":"1040-1062"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2411614","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Reference ranges are invaluable in laboratory medicine, as these are indispensable tools for the interpretation of laboratory test results. When assessing measurements on a single analyte, univariate reference intervals are required. In many cases, however, measurements on several analytes are needed by medical practitioners to diagnose more complicated conditions such as kidney function or liver function. For such cases, it is recommended to use multivariate reference regions, which account for the cross-correlations among the analytes. Traditionally, multivariate reference regions (MRRs) have been constructed as ellipsoidal regions. The disadvantage of such regions is that they are unable to detect component-wise outlying measurements. Because of this, rectangular reference regions have recently been put forward in the literature. In this study, we develop methodologies to compute rectangular MRRs that incorporate covariate information, which are often necessary in evaluating laboratory test results. We construct the reference region using tolerance-based criteria so that the resulting region possesses the multiple use property. Results show that the proposed regions yield coverage probabilities that are accurate and are robust to the sample size. Finally, we apply the proposed procedures to a real-life example on the computation of an MRR for three components of the insulin-like growth factor system.

基于回归的矩形公差区域作为检验医学的参考区域。
参考范围在检验医学中是无价的,因为它们是解释实验室检测结果不可或缺的工具。当评估单个分析物的测量值时,需要单变量参考区间。然而,在许多情况下,医生需要对几种分析物进行测量,以诊断更复杂的疾病,如肾功能或肝功能。对于这种情况,建议使用多变量参考区域,这可以解释分析物之间的相互关系。传统上,多变量参考区域(mrr)被构建为椭球形区域。这种区域的缺点是它们无法检测到组件的外围测量值。正因为如此,最近在文献中提出了矩形参考区域。在这项研究中,我们开发了计算包含协变量信息的矩形磁共振成像的方法,这在评估实验室测试结果时通常是必要的。我们使用基于公差的准则构造参考区域,使结果区域具有多用途特性。结果表明,所提出的区域产生的覆盖概率是准确的,并且对样本量具有鲁棒性。最后,我们将提出的程序应用于一个现实生活中的例子,计算胰岛素样生长因子系统的三个组成部分的MRR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信