Fahim T Imam, Thomas H Gillespie, Ilias Ziogas, Monique C Surles-Zeigler, Susan Tappan, Burak I Ozyurt, Jyl Boline, Bernard de Bono, Jeffrey S Grethe, Maryann E Martone
{"title":"Developing a multiscale neural connectivity knowledgebase of the autonomic nervous system.","authors":"Fahim T Imam, Thomas H Gillespie, Ilias Ziogas, Monique C Surles-Zeigler, Susan Tappan, Burak I Ozyurt, Jyl Boline, Bernard de Bono, Jeffrey S Grethe, Maryann E Martone","doi":"10.3389/fninf.2025.1541184","DOIUrl":null,"url":null,"abstract":"<p><p>The Stimulating Peripheral Activity to Relieve Conditions (SPARC) program is a U.S. National Institutes of Health (NIH) funded effort to enhance our understanding of the neural circuitry responsible for visceral control. SPARC's mission is to identify, extract, and compile our overall existing knowledge and understanding of the autonomic nervous system (ANS) connectivity between the central nervous system and end organs. A major goal of SPARC is to use this knowledge to promote the development of the next generation of neuromodulation devices and bioelectronic medicine for nervous system diseases. As part of the SPARC program, we have been developing the SPARC Connectivity Knowledge Base of the Autonomic Nervous System (SCKAN), a dynamic resource containing information about the origins, terminations, and routing of ANS projections. The distillation of SPARC's connectivity knowledge into this knowledge base involves a rigorous curation process to capture connectivity information provided by experts, published literature, textbooks, and SPARC scientific data. SCKAN is used to automatically generate anatomical and functional connectivity maps on the SPARC portal. In this article, we present the design and functionality of SCKAN, including the detailed knowledge engineering process developed to populate the resource with high quality and accurate data. We discuss the process from both the perspective of SCKAN's ontological representation as well as its practical applications in developing information systems. We share our techniques, strategies, tools and insights for developing a practical knowledgebase of ANS connectivity that supports continual enhancement.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1541184"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949889/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1541184","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Stimulating Peripheral Activity to Relieve Conditions (SPARC) program is a U.S. National Institutes of Health (NIH) funded effort to enhance our understanding of the neural circuitry responsible for visceral control. SPARC's mission is to identify, extract, and compile our overall existing knowledge and understanding of the autonomic nervous system (ANS) connectivity between the central nervous system and end organs. A major goal of SPARC is to use this knowledge to promote the development of the next generation of neuromodulation devices and bioelectronic medicine for nervous system diseases. As part of the SPARC program, we have been developing the SPARC Connectivity Knowledge Base of the Autonomic Nervous System (SCKAN), a dynamic resource containing information about the origins, terminations, and routing of ANS projections. The distillation of SPARC's connectivity knowledge into this knowledge base involves a rigorous curation process to capture connectivity information provided by experts, published literature, textbooks, and SPARC scientific data. SCKAN is used to automatically generate anatomical and functional connectivity maps on the SPARC portal. In this article, we present the design and functionality of SCKAN, including the detailed knowledge engineering process developed to populate the resource with high quality and accurate data. We discuss the process from both the perspective of SCKAN's ontological representation as well as its practical applications in developing information systems. We share our techniques, strategies, tools and insights for developing a practical knowledgebase of ANS connectivity that supports continual enhancement.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.