Unifying the Absolute Configuration of Dibenzopyrrocoline Alkaloids with Relative Configuration Revision of Cryptowolinol and Description of Isocryptaustoline from Cryptocarya oubatchensis.

IF 3.3 2区 生物学 Q2 CHEMISTRY, MEDICINAL
Rany B Mbeng Obame, Sidney Gallard, Sacha Gibert, Jean-François Gallard, Solenn Ferron, Blandine Séon-Méniel, Guillaume Bernadat, Mehdi A Beniddir, Pierre Le Pogam
{"title":"Unifying the Absolute Configuration of Dibenzopyrrocoline Alkaloids with Relative Configuration Revision of Cryptowolinol and Description of Isocryptaustoline from <i>Cryptocarya oubatchensis</i>.","authors":"Rany B Mbeng Obame, Sidney Gallard, Sacha Gibert, Jean-François Gallard, Solenn Ferron, Blandine Séon-Méniel, Guillaume Bernadat, Mehdi A Beniddir, Pierre Le Pogam","doi":"10.1021/acs.jnatprod.4c01315","DOIUrl":null,"url":null,"abstract":"<p><p>Dibenzopyrrocoline alkaloids, found in lauraceous and hernandiaceous plants, have been studied since the 1950s. The absolute configuration of these alkaloids, including cryptaustoline, has been a topic of debate due to conflicting studies. Having in our laboratory some authentic samples of dibenzopyrrocoline-type <i>Cryptocarya</i> alkaloids, we decided to reinvestigate their absolute configuration using modern spectroscopic techniques along with TDDFT calculations. The NMR reinvestigation of the authentic sample of cryptowolinol led us to revise its relative configuration using ML-<i>J</i>-DP4 and DP4+ analyses. Moreover, the absolute configuration of all dibenzopyrrocoline alkaloids reported to date benefitted from a complete re-evaluation based on a comparison with TDDFT-SR and TDDFT-ECD predictions leading to a unified absolute configuration. At last, this patrimonial reinvestigation unveiled a historical sample corresponding to a heretofore unpublished dibenzopyrrocoline alkaloid, which we named isocryptaustoline. The reisolation of this molecule from the total alkaloid extract of <i>Cryptocarya oubatchensis</i> makes it a genuine natural product.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c01315","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dibenzopyrrocoline alkaloids, found in lauraceous and hernandiaceous plants, have been studied since the 1950s. The absolute configuration of these alkaloids, including cryptaustoline, has been a topic of debate due to conflicting studies. Having in our laboratory some authentic samples of dibenzopyrrocoline-type Cryptocarya alkaloids, we decided to reinvestigate their absolute configuration using modern spectroscopic techniques along with TDDFT calculations. The NMR reinvestigation of the authentic sample of cryptowolinol led us to revise its relative configuration using ML-J-DP4 and DP4+ analyses. Moreover, the absolute configuration of all dibenzopyrrocoline alkaloids reported to date benefitted from a complete re-evaluation based on a comparison with TDDFT-SR and TDDFT-ECD predictions leading to a unified absolute configuration. At last, this patrimonial reinvestigation unveiled a historical sample corresponding to a heretofore unpublished dibenzopyrrocoline alkaloid, which we named isocryptaustoline. The reisolation of this molecule from the total alkaloid extract of Cryptocarya oubatchensis makes it a genuine natural product.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
5.90%
发文量
294
审稿时长
2.3 months
期刊介绍: The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin. When new compounds are reported, manuscripts describing their biological activity are much preferred. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信