Desirée Pecora, Anna M Magni, Sara Vicinanza, Francesca Annunziata, Salvatore Princiotto, Silvia Donzella, Gabriele Meroni, Piera A Martino, Nicoletta Basilico, Silvia Parapini, Paola Conti, Chiara Borsari, Lucia Tamborini
{"title":"Two-Step Flow Amidation of Natural Phenolic Acids as Antiradical and Antimicrobial Agents.","authors":"Desirée Pecora, Anna M Magni, Sara Vicinanza, Francesca Annunziata, Salvatore Princiotto, Silvia Donzella, Gabriele Meroni, Piera A Martino, Nicoletta Basilico, Silvia Parapini, Paola Conti, Chiara Borsari, Lucia Tamborini","doi":"10.1021/acs.jnatprod.5c00131","DOIUrl":null,"url":null,"abstract":"<p><p>Natural hydroxycinnamic acid amides (HCAAs) and riparins offer significant health benefits. However, their extraction from natural sources is difficult, and traditional synthetic methods remain wasteful, raising the need for more efficient alternatives. In this work, a two-step chemo-enzymatic flow method for the efficient esterification and amidation of phenolic acids was developed and successfully applied to the synthesis of riparin derivatives and HCAAs. The flow Fischer esterification was optimized using vanillic acid as a model starting material and SiliaBond Tosic Acid (SCX-3) as an immobilized acid catalyst, achieving a quantitative yield in a short residence time. The following amidation step, catalyzed by immobilized <i>Candida antarctica</i> lipase B, was optimized in toluene, leading to the desired amides. The synthesized compounds were evaluated for their radical scavenging, antibacterial, and antileishmanial properties. Overall, this work disclosed a novel approach for the efficient synthesis of riparin derivatives and HCAAs with interesting biological properties.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.5c00131","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Natural hydroxycinnamic acid amides (HCAAs) and riparins offer significant health benefits. However, their extraction from natural sources is difficult, and traditional synthetic methods remain wasteful, raising the need for more efficient alternatives. In this work, a two-step chemo-enzymatic flow method for the efficient esterification and amidation of phenolic acids was developed and successfully applied to the synthesis of riparin derivatives and HCAAs. The flow Fischer esterification was optimized using vanillic acid as a model starting material and SiliaBond Tosic Acid (SCX-3) as an immobilized acid catalyst, achieving a quantitative yield in a short residence time. The following amidation step, catalyzed by immobilized Candida antarctica lipase B, was optimized in toluene, leading to the desired amides. The synthesized compounds were evaluated for their radical scavenging, antibacterial, and antileishmanial properties. Overall, this work disclosed a novel approach for the efficient synthesis of riparin derivatives and HCAAs with interesting biological properties.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.